PRIMITIVE ORTHOGONAL IDEMPOTENTS FOR R-TRIVIAL MONOIDS

Chris Berg, Nantel Bergeron, Sandeep Bhargava, Franco Saliola

Fields Institute, York University, and Université du Québec à Montréal (Canada)

History of the problem

Goal: Construct primitive orthogonal idempotents of the Hecke algebra $H_W(0)$.

Norton 1979: Constructs analogue of Young Idempotents η_{α} for $H_n(0)$ (type A). $H_n(0)\eta_{\alpha}$ gives all projective indecomposables (not simples), but the η_{α} are not idempotents nor orthogonal.

Krob-Thibon 1997: Representation theory of $H_n(0)$ is related with QSym and NSym. (Characteristic map)

Schocker 2008: Defines WOM (Weakly Ordered Monoids) and connects *left regular* bands and Hecke algebras at q = 0 (all types).

Denton 2010: Constructs orthogonal idempotents for $H_n(0)$... but no relation with η_{α} . Extended to J-trivial monoids by Denton, Hivert, Thiéry, Schilling.

BBBS 2010: Constructs orthogonal idempotents for WOM, generalizing η_{α} .

tion by Brown; later simplified by Saliola: for
$$J \in L$$
, fix x_J with $\operatorname{supp}(x_J) = J$, and let

$$e_J := x \left(1 - \sum_{K > J} e_K \right)$$

• Radical of
$$\mathbb{K}W$$
: $\sqrt{\mathbb{K}W} = \ker(C)$, and

$$\mathbb{K}W / \sqrt{\mathbb{K}W} \cong \mathbb{K}L.$$

Weakly Ordered Monoids (WOM) [Schocker]

Definition of WOM

Manfred Schocker introduced WOM hoping to construct primitive orthogonal idempotents for Hecke algebras at q = 0. Preorder: $u \leq v \iff uw = v$ for some $w \in W$

Definition: W is a **WOM** if there are a finite upper semilattice L and two maps $C, D: W \to L$ satisfying:

- 1. C surjective morphism of monoids.
- 2. $uv \le u$ and $u \le uv \implies C(v) \le D(u)$.

3.
$$C(v) \le D(u) \implies uv = u$$
.

Examples and Properties Examples: • Left regular bands: C = D = supp• Hecke monoids : C = content map; D = descent mapProposition A [Schocker]: If W is a WOM, then \leq is an order and $\sqrt{\mathbb{K}W} = \ker(C)$

Corollary A:
$$\mathbb{K}W/\sqrt{\mathbb{K}W} \cong \mathbb{K}L$$
 is semisimple and commutative.

WOM and *R*-trivial monoids

Definition. W is **R-trivial** if for all $x, y \in W$,

$$xW = yW \implies x = y$$

Proposition B: \leq is an order \iff W is R-trivial

Proposition C [N. M. Thiéry and B. Steinberg]:

W is a WOM $\iff W$ is R-trivial

Let W be WOM generated by $G = \{g_1, g_2, \ldots\}$.

 ω -power: If x is an element of a finite semigroup W, then there is a power x^{ω} of x that is idempotent:

 $x^{\omega}x^{\omega} = x^{\omega}$ Number of primitive idempotents: Since $\mathbb{K}W / \sqrt{\mathbb{K}W} \cong \mathbb{K}L$ is semisimple and commutative, there is one primitive idempotent for each element of L.

Step 1. Analogues of Norton elements: for $J \in L$, define

 $\eta_J = A_J T_J$

Example: For the Hecke algebra $H_7(0)$, if $J = \{1, 3, 4\}$ then $T_J = T_1 T_3 T_4 T_3$

Nice Property: $T_J x = T_J$ for all x such that $C(x) \leq J$

Proposition D [BBBS] A_J is well-defined.

Example: For the Hecke algebra $H_7(0)$, if $J = \{1, 3, 4\}$ then

 $A_J = \overline{T}_2 \overline{T}_5 \overline{T}_6 \overline{T}_5$ where $\overline{T}_i = 1 - T_i$

Nice Property: $xA_J = 0$ for all x such that $C(x) \not\leq J$

Constructing Idempotents

Properties of η_J :

• Not idempotent: A_J and T_J are both idempotents but ... η_J IS NOT.

• but almost orthogonal: $J \leq K \implies \eta_J \eta_K = 0$

Step 2. Build an idempotent:

Properties of P_J :

• almost orthogonal: $J \not\leq K \implies P_J P_K = 0.$

• P_J is idempotent: $P_J^2 = P_J$ [because $\sum_{n=0}^N x(1-x)^n = 1 - (1-x)^{N+1}$]

Step 3. Orthogonalize: we apply the idempotent trick of Saliola to "orthogonalize P_J ": define

 $P_J := \left(\sum_{n \in I} \eta_J (1 - \eta_J)^n\right)^2$

Proposition E [BBBS]

$\eta_J^2 (1 - \eta_J)^N = 0$ for some N > 0

 $e_J := P_J \left(1 - \sum_{K} e_K \right)$

Theorem [BBBS]

 $\{e_J\}_{J \in L}$ is a complete system of primitive orthogonal idempotents for $\mathbb{K}W$.

References

- [1] J. Almedia, S. Margolis, B. Steinberg, and M. Volkov. Representation theory of finite semigroups, semigroup radicals and formal language theory. Trans. AMS, 361(3):1429–1461, 2009.
- [2] C. Berg, N. Bergeron, S. Bhargava, and F. Saliola. Primitive orthogonal idempotents for R-trivial monoids. ArXiv e-prints, 2010. arXiv:1009.4943v1 [math.RT].

[3] K. Brown. Semigroups, rings, and Markov chains. J. Theoret. Probab., 13(3):871-938, 2000.

- [4] T. Denton. A combinatorial formula for orthogonal idempotents in the 0-Hecke algebra of S_N . DMTCS proc., AN(01):701-712, 2010.
- [5] T. Denton. A combinatorial formula for orthogonal idempotents in the 0-Hecke algebra of the symmetric group. ArXiv e-prints, 2010. preprint arXiv:1008.2401v1 [math.RT].
- [6] T. Denton, F. Hivert, A. Schilling, and N. M. Thiéry. On the representation theory of finite J-trivial monoids. preprint arXiv:1010.3455, 2010.
- [7] D. Krob, and J.-Y. Thibon. Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at q = 0. J. Algebr. Comb.,

6:339–376, 1997.

- [8] P. Norton. 0-Hecke algebras. J. Austral. Math. Soc. Ser. A, 27:337–57, 1979.
- [9] F. Saliola. The Quiver of the Semigroup Algebra of a Left Regular Band. International Journal of Algebra and Computation, 17(8):1593–1610, 2007.
- [10] M. Schocker. Radical of weakly ordered semigroup algebras. J. Algebr. Comb., 28:231–234, 2008.
- [11] Sage Mathematics Software (Version 4.6 + Sage-combinat), 2010. http://www.sagemath.org and http://combinat.sagemath.org.