Primitive Orthogonal Idempotents for R-Trivial Monoids

Chris Berg, Nantel Bergeron, Sandeep Bhargava, Franco Saliola
Fields Institute, York University, and Université du Québec à Montréal (Canada)

History of the problem

Goal: Construct primitive orthogonal idempotents of the Hecke algebra $H_{W}(0)$
Norton 1979: Constructs analogue of Young Idempotents η_{α} for $H_{n}(0)$ (type A). $H_{n}(0) \eta_{\alpha}$ gives all projective indecomposables (not simples), but the η_{α} are not idempotents nor orthogonal.

Krob-Thibon 1997: Representation theory of $H_{n}(0)$ is related with QSym and NSym. (Characteristic map)

Schocker 2008: Defines WOM (Weakly Ordered Monoids) and connects left regular bands and Hecke algebras at $q=0$ (all types).

Denton 2010: Constructs orthogonal idempotents for $H_{n}(0) \ldots$ but no relation with η_{α}. Extended to J-trivial monoids by Denton, Hivert, Thiéry, Schilling,
BBBS 2010: Constructs orthogonal idempotents for WOM, generalizing η_{α}

Motivating Examples

Left Regular Bands

- Semigroups W such that $x^{2}=x$ and $x y x=x y$ for all $x, y \in W$.
- Support map supp: $W \rightarrow L$: there is surjection onto the lattice
$L=W / \sim$ where $x \sim y$ iff $x=x y$ and $y=y x$
- Radical of $\mathbb{K} W$: $\sqrt{\mathbb{K} W}=\operatorname{ker}($ supp $)$, and

$$
\mathbb{K} W / \sqrt{\mathbb{K} W} \cong \mathbb{K} L .
$$

- Orthogonal idempotents of $\mathbb{K} W$: first construction by Brown; later simplified by Saliola: for $J \in L$, fix x_{J} with $\operatorname{supp}\left(x_{J}\right)=J$, and let

$$
e_{J}:=x\left(1-\sum_{K>J} e_{K}\right)
$$

Hecke monoids (type A)

- Generated by $T_{1}, T_{2}, \ldots, T_{n-1}$ with relations:

$$
\begin{gathered}
T_{i}^{2}=T_{i} \\
T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1} \\
T_{i} T_{j}=T_{j} T_{i} \quad \text { for } \quad|i-j|>1 .
\end{gathered}
$$

- two maps onto the lattice of subsets of $[n-1]$
- Descent map: $D\left(T_{w}\right)=\left\{i: T_{w} T_{i}=T_{w}\right\}$
- Content map: $C\left(T_{w}\right)=\left\{i: T_{i}\right.$ occur in $\left.T_{w}\right\}$
- Radical of $\mathbb{K} W: \sqrt{\mathbb{K} W}=\operatorname{ker}(C)$, and

$$
\mathbb{K} W / \sqrt{\mathbb{K} W} \cong \mathbb{K} L
$$

Weakly Ordered Monoids (WOM) [Schocker]

Definition of WOM

Manfred Schocker introduced WOM hoping to construct primitive orthogonal idempotents for Hecke algebras at $q=0$.
Preorder: $u \leq v \Longleftrightarrow u w=v$ for some $w \in W$
Definition: W is a WOM if there are a finite upper semilattice L and two maps $C, D: W \rightarrow L$ satisfying:

1. C surjective morphism of monoids.
2. $u v \leq u$ and $u \leq u v \Longrightarrow C(v) \leq D(u)$.
3. $C(v) \leq D(u) \Longrightarrow u v=u$.

Examples:

- Left regular bands: $C=D=$ supp
- Hecke monoids : $C=$ content map ; $D=$ descent map

Proposition A [Schocker]: If W is a WOM, then \leq is an order and

$\sqrt{\mathbb{K} W}=\operatorname{ker}(C)$

Corollary A: $\mathbb{K} W / \sqrt{\mathbb{K} W} \cong \mathbb{K} L$ is semisimple and commutative.

WOM and R-trivial monoids Definition. W is \mathbf{R}-trivial if for all $x, y \in W$,

$$
x W=y W \quad \Longrightarrow \quad x=y
$$

Proposition B: $\quad \leq$ is an order $\Longleftrightarrow W$ is R-trivial Proposition C [N. M. Thiéry and B. Steinberg]:

$$
W \text { is a WOM } \Longleftrightarrow W \text { is R-trivial }
$$

Let W be WOM generated by $G=\left\{g_{1}, g_{2}, \ldots\right\}$.
ω-power: If x is an element of a finite semigroup W, then there is a power x^{ω} of x that is idempotent:

Number of primitive idempotents: Since $\mathbb{K} W / \sqrt{\mathbb{K} W} \cong \mathbb{K} L$ is semisimple and commutative, there is one primitive idempotent for each element of L.
Step 1. Analogues of Norton elements: for $J \in L$, define $\eta_{J}=A_{J} T_{J}$

$$
T_{J}:=\left(\prod_{\substack{g \in G \\ C(g) \leq J}} g^{\omega}\right)^{\omega}
$$

Example: For the Hecke algebra $H_{7}(0)$, if $J=\{1,3,4\}$ then

$$
T_{J}=T_{1} T_{3} T_{4} T_{3}
$$

Nice Property: $\quad T_{J} x=T_{J}$ for all x such that $C(x) \leq J$

$$
A_{J}:=\left(\prod_{\substack{g \in G \\ C(l) \nless J}}\left(1-g^{\omega}\right)\right)^{\omega}
$$

Proposition D [BBBS] A_{J} is well-defined.
Example: For the Hecke algebra $H_{7}(0)$, if $J=\{1,3,4\}$ then

$$
A_{J}=\bar{T}_{2} \bar{T}_{5} \bar{T}_{6} \bar{T}_{5} \quad \text { where } \bar{T}_{i}=1-T_{i}
$$

Nice Property: $\quad x A_{J}=0$ for all x such that $C(x) \not \leq J$

Constructing Idempotents

Properties of η_{J} :

- Not idempotent: A_{J} and T_{J} are both idempotents but $\ldots \eta_{J}$ IS NOT
- but almost orthogonal: $J \not 又 K \Longrightarrow \eta_{J} \eta_{K}=0$

Step 2. Build an idempotent:

$$
P_{J}:=\left(\sum_{n \geq 0} \eta_{J}\left(1-\eta_{J}\right)^{n}\right)^{2}
$$

Proposition E [BBBS]

$$
\eta_{J}^{2}\left(1-\eta_{J}\right)^{N}=0 \text { for some } N>0
$$

Properties of P_{J} :

- P_{J} is idempotent: $P_{J}^{2}=P_{J} \quad\left[\right.$ because $\left.\sum_{n=0}^{N} x(1-x)^{n}=1-(1-x)^{N+1}\right]$
- almost orthogonal: $J \not \leq K \Longrightarrow P_{J} P_{K}=0$.

Step 3. Orthogonalize: we apply the idempotent trick of Saliola to "orthogonalize $P_{J}{ }^{J}$: define

$$
e_{J}:=P_{J}\left(1-\sum_{K>J} e_{K}\right)
$$

Theorem [BBBS]
$\left\{e_{J}\right\}_{J \in L}$ is a complete system of primitive orthogonal idempotents for $\mathbb{K} W$

References

[1] J. Almedia, S. Margolis, B. Steinberg, and M. Volkov. Representation theory of finite semigroups, semigroup radicals and formal language theory. Trans. AMS, 361(3):1429-1461, 2009.
[2] C. Berg, N. Bergeron, S. Bhargava, and F. Saliola. Primitive orthogonal idempotents for R-trivial monoids. ArXiv e-prints, 2010. arXiv:1009.4943v1 [math.RT].
[3] K. Brown. Semigroups, rings, and Markov chains. J. Theoret. Probab. 13(3):871-938, 2000.
[4] T. Denton. A combinatorial formula for orthogonal idempotents in the 0-Hecke algebra of S_{N}. DMTCS proc., AN(01):701-712, 2010.
[5] T. Denton. A combinatorial formula for orthogonal idempotents in the 0 -Hecke algebra of the symmetric group. ArXiv e-prints, 2010. preprint arXiv:1008.2401v1 [math.RT].
[6] T. Denton, F. Hivert, A. Schilling, and N. M. Thiéry. On the representation theory of finite J-trivial monoids. preprint arXiv:1010.3455, 2010.
[7] D. Krob, and J.-Y. Thibon. Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at $q=0$. J. Algebr. Comb.,

6:339-376, 1997

[8] P. Norton. 0-Hecke algebras. J. Austral. Math. Soc. Ser. A, 27:337-57, 1979
[9] F. Saliola. The Quiver of the Semigroup Algebra of a Left Regular Band. International Journal of Algebra and Computation, 17(8):1593-1610, 2007.
[10] M. Schocker. Radical of weakly ordered semigroup algebras. J. Algebr. Comb., 28:231-234, 2008.
[11] Sage Mathematics Software (Version $4.6+$ Sage-combinat), 2010 http://www.sagemath.org and http://combinat.sagemath.org.

