Down operators on the affine nilCoxeter algebra and expansions of noncommutative k-Schur functions

Chris Berg, Franco Saliola, Luis Serrano
cberg@lacim.ca, saliola.franco@uqam.ca, serrano@lacim.ca

Definition. The ascent composition of $v_{0} \xrightarrow{\ell_{1}} \ldots \xrightarrow{\ell_{m}} v_{m}$ is $\left[i_{1}, i_{2}-i_{1}, \ldots, i_{j}-i_{j-1}, m-i_{j}\right] \quad$ Examples $(k=2)$:
where $i_{1}<\cdots<i_{j}$ are the indices i_{a} for which $\ell_{i_{a}}<\ell_{i_{a}+1}$. For a composition J of m :

$$
D_{J}^{\Gamma}\left(v_{0}\right)=\sum_{\text {ascents }\left(v_{0} \xrightarrow{\ell_{1}} v_{1} \xrightarrow{\ell_{2}} \cdots \xrightarrow{\ell_{m}} v_{m}\right)=J} v_{m}
$$

where the sum ranges over all paths in the graph Γ starting at v_{0} of length m.

$$
\begin{aligned}
& \text { Examples }(k=2) \text { : } \\
& \qquad \begin{aligned}
D_{[1]}^{W}\left(s_{1} s_{2} s_{1} s_{0}\right) & =s_{1} s_{2} s_{0}+s_{1} s_{2} s_{1}+s_{2} s_{1} s_{0} \\
D_{[3]}^{W}\left(s_{1} s_{2} s_{1} s_{0}\right) & =s_{2}+s_{0} \\
D_{[2,1]}^{W}\left(s_{1} s_{2} s_{1} s_{0}\right) & =s_{2}+2 s_{0}+s_{1}
\end{aligned}
\end{aligned}
$$

Application: Noncommutative k-Schur function expansions

Problem

The noncommutative k-Schur functions $s^{(k)}$ are elements of a subalgebra of the affine nilCoxeter algebra. Expanding $s_{\lambda}^{(h)}$ into the natural basis of affine permutations is equivalent to finding the k-Littlewood-Richardson coefficients [Lam]

New Result
To compute $\mathfrak{s}_{(3,1)}^{(4)}$, delete two red boxes from different columns in the diagrams; or equivalently, apply $D_{[2]}$

Application: Strong Schur functions (LLMS conjectures)

Lam, Lapointe, Morse, and Shimozono generalized the k-Schur functions to a larger set of functions called the strong Schur function Lam, Lapointe, Morse, and Shimozono generalized the k-Schur functions to a larger set of functions called the strong Schur func
Strong $_{u} / v$, where u and v of elements in W. They conjectured some of their properties which we can prove using the down operators
Theorem 1 [Conj. 4.18 (1) LLMS] The strong Schur functions are symmetric and monomial positive.

$$
\text { Strong }_{u / v}=\sum_{\lambda}\left\langle D^{\lambda}\left(\mathbf{u}_{u}\right), \mathbf{u}_{v}\right\rangle_{\mathbb{A}} m_{\lambda}, \text { where } D^{\lambda}=D_{\lambda_{1}} \circ \cdots \circ D_{\lambda_{l}}
$$

Theorem 2 [Conj. 4.18 (2) LLMS] The strong Schur functions lie in $\Lambda_{(k)}$.

$$
\operatorname{Strong}_{u / v}=\sum_{\lambda \in \mathcal{B}^{(k)}}\left\langle\widehat{m_{\lambda}^{\perp}}\left(\mathbf{u}_{u}\right), \mathbf{u}_{v}\right\rangle_{\mathbb{A}} h_{\lambda} .
$$

Theorem 3 [Conj. 4.18 (3) LLMS] Let μ, ν be k-bounded. The strong Schur functions Strong $_{\mu / \nu}$ are k-Schur positive. Moreover, the coefficient of $s_{\lambda}^{(k)}$ in Strong ${ }_{\mu / \nu}$ is the coefficient of \widetilde{F}_{μ} in $\widetilde{F}_{\lambda} \widetilde{F}_{\nu}$.

$$
\operatorname{Strong}_{\mu / \nu}=\sum_{\lambda \in \mathcal{B}^{(k)}}\left\langle s_{\mu}^{(k)}, \widetilde{F}_{\lambda} \widetilde{F}_{\nu}\right\rangle s_{\lambda}^{(k)} .
$$

