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Abstract. We present a simple construction of the eigenvectors for the tran-

sition matrices of random walks on a class of semigroups called left-regular
bands. These walks were introduced and analyzed by Brown, and they include

the hyperplane chamber walks of Bidigare, Hanlon and Rockmore. This con-

struction leads to new concise proofs of several of the known results about these
walks. We also explain how tools from poset topology can be used to extract

an eigenbasis for the transition matrices of the hyperplane chamber walks, and

indicate the connection with a method recently described by Denham.

1. Introduction

In [3], Brown introduces and analyzes random walks on a class of semigroups
called left-regular bands. These encompass several well-known random walks, in-
cluding the walks on the chambers of a hyperplane arrangement introduced by
Bidigare, Hanlon and Rockmore [1]. The transition matrices of these walks are
diagonalizable and their eigenvalues are easy to describe (see §2).

We present here a simple construction of the eigenvectors for the transition ma-
trices of these random walks, leading to concise proofs of several of the known results
about these walks. We follow Brown’s lead and consider the transition matrices as
elements of the semigroup algebra. In §3, we decompose these elements into linear
combinations of orthogonal idempotents by specializing a simple recursive proce-
dure introduced in [7]. We use this decomposition to describe the eigenspaces of the
transition matrices and to derive several known results. In §4, we explain how to
use tools from poset topology to extract an eigenbasis for the transition matrices,
and we indicate the connection with a method recently described by Denham [5].

We remark that Steinberg [9] also produced a simple proof of Brown’s diagonal-
izability result, but his proof does not yield the eigenvectors.

2. Notation & Background

2.1. Left-regular bands. Let S be a finite semigroup with identity. S is said to
be a left-regular band if there is a lattice L together with a surjection supp : S → L
satisfying

supp(xy) = supp(x) ∨ supp(y)

and

xy = x if supp(y) ≤ supp(x)

for all x and y in S, where ∨ denotes the join operation of L.
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An element x ∈ S is said to be a chamber if supp(x) = 1̂, where 1̂ is the (unique)
maximal element of L.

It follows easily from this definition that the elements of a left-regular band
satisfy the identities x2 = x and xyx = xy. (In fact, this is a characterization of
left-regular bands [3, Appendix B].)

2.2. Semigroup of faces of a hyperplane arrangement. Hyperplane arrange-
ments provide one source of examples of left-regular bands. We recall here the
relevant notions and refer the reader to [3, Appendix A] for details.

Let A denote a central hyperplane arrangement in V = Rn. The hyperplanes in
A partition V into subsets called the faces of the arrangement. There is a natural
semigroup structure on the set of faces F defined as follows. The product of two faces
x and y is the face xy uniquely defined by the properties that, for each hyperplane
H ∈ A, the points in xy lie: on the same side of H as x if x 6⊆ H; on the same side
of H as y if x ⊆ H, but y 6⊆ H; and inside H if x, y ⊆ H. This product admits an
alternative geometric description: xy is the unique face one first enters (possibly x
itself) when following a straight line from a point in x toward a point in y.

Let L denote the intersection lattice of A; that is, the set of subspaces of V that
can be expressed as an intersection of hyperplanes in A. We order L by inclusion,
and remark that some authors choose to order L by reverse-inclusion. The map
supp : F → L that sends a face x to the smallest subspace in L containing x
satisfies the conditions of §2.1, making F a left-regular band. The chambers of a
hyperplane arrangement are precisely the faces of maximal dimension.

2.3. Random walks on left-regular bands. Let S be a left-regular band, C the
set of chambers in S and let {px}x∈S be a probability distribution on S. A step in
the random walk moves from a chamber c to the chamber xc with probability px
(note that the chambers form a two-sided ideal of S, so xc is a chamber since c is a
chamber). The transition matrix of this walk is the matrix with rows and columns
indexed by C, and with (c, d)-entry given by

Tc,d =
∑
xc=d

px.(1)

By identifying {px}x∈S with the following element of the semigroup algebra RS,

p =
∑
x∈S

pxx

the transformation matrix T becomes the matrix (acting on row vectors) of the
linear transformation a 7→ pa restricted to the vector space RC with basis C.

3. Eigenvalues and Eigenspaces

In light of the above identification, to study the transition matrix we need only
study the linear transition a 7→ pa. We will derive an expression for p of the form

p =
∑
X∈L

λXeX(2)

where the λX are the eigenvalues of p and the eX are orthogonal idempotents in
RS (an idempotent is an element a satisfying a2 = a; two idempotents a and b are
orthogonal if ab = 0 = ba). Our starting point is the following result that allows us
to construct orthogonal idempotents in RS that sum to 1.
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Remark 1. Brown proved that the transition matrices are diagonalizable by showing
that the subalgebra generated by p is semisimple. A byproduct of his proof was an
expression for p of the form (2). We begin with a simple argument establishing (2),
from which we immediately deduce the semisimplicity and the diagonalizability.

Theorem 2 ([7]). For each X ∈ L, let SX = {x ∈ S : supp(x) = X} and fix an
element uX =

∑
x∈SX

uxx ∈ RSX with
∑
x ux = 1. Define elements eX ∈ RS, one

for each X ∈ L, recursively using the formula

eX = uX −
∑
Y >X

uXeY .(3)

Then {eX}X∈L is a complete system of primitive orthogonal idempotents in RS.
(In particular, e2X = eX for X ∈ L, eXeY = 0 if X 6= Y , and

∑
X∈L eX = 1.)

These idempotents also satisfy the following remarkable property.

Lemma 3 ([7]). Let X ∈ L and y ∈ S. If supp(y) 6≤ X, then yeX = 0.

(We do not include proofs of these results here, but remark that they can be
proved by first establishing Lemma 3, then using it to prove Theorem 2.)

The decomposition for p given in (2) results from a specialization of the uX
in Theorem 2. The following arguments do not require that

∑
x∈S px = 1, so we

temporarily drop this assumption and write λV =
∑
x∈S px.

It follows from (1) that T is a nonnegative matrix since px ≥ 0 for all x in S.
The sum of the entries in the row of T indexed by the chamber c is∑

d∈C

Tc,d =
∑
d∈C

∑
x∈S
xc=d

px =
∑
x∈S

px = λV ,

which is independent of the chamber c. Hence, the row sums of T are all equal
to λV , from which it follows that λV is both an eigenvalue of T and its spectral
radius [6, Lemma 8.1.21]. By a generalization of the Perron-Frobenius Theorem
to nonnegative matrices [6, Lemma 8.3.1], there is a nonnegative and nonzero row
vector ~u such that ~uT = λV T . Viewing ~u as the element u :=

∑
c∈C ucc ∈ RC, we

have pu = λV u and
∑
c uc 6= 0. In particular, we renormalise so that

∑
c uc = 1.

Fix X ∈ L and apply the above argument to the element

pX =
∑
x∈S

supp(x)≤X

pxx

acting by left-multiplication on RSX , where SX = {x ∈ S : supp(x) = X}. Then,
for each X ∈ L, there exists an element uX =

∑
x∈SX

uxx ∈ RSX satisfying

pXuX = λXuX and
∑
x∈SX

ux = 1, where λX =
∑

supp(x)≤X

px.(4)

With these uX as input, define elements eX ∈ RS recursively using (3). By
Theorem 2, the eX are orthogonal idempotents that sum to the identity in RS.

Theorem 4. Let p =
∑
x∈S pxx with px ≥ 0 for all x ∈ S. Then

p =
∑
X∈L

λXeX ,

where {eX}X∈L are the idempotents defined in the preceding paragraph.



4 FRANCO SALIOLA

Proof. Note that u2X = uX : since yx = y for x, y ∈ SX and
∑
x ux = 1, we have

u2X =
∑

y,x∈SX

uyuxyx =
∑

y,x∈SX

uyuxy =

( ∑
x∈SX

ux

)
uX = uX .

By Lemma 3,

peX =

∑
y∈S

pyy

 eX =

 ∑
supp(y)≤X

pyy

 eX = pXeX .

Since uX is an idempotent, we have eX = uXeX . Combining this with (4) yields

peX = pXeX = pXuXeX = λXuXeX = λXeX .

Finally, since
∑
X∈L eX = 1,

p =
∑
X∈L

peX =
∑
X∈L

λXeX . �

From this we recover Brown’s results that the subalgebra of RS generated by p
is split semisimple [3]. Furthermore, it allows us to easily describe the eigenvalues
and eigenspaces of the transition matrices of the random walks.

Corollary 5. Keep the notation of Theorem 4. There is a direct sum decomposition
of vector spaces RC ∼=

⊕
X∈L eXRC and left-multiplication by p on the subspace

eXRC is scalar multiplication by λX . Thus, the λ-eigenspace of p is
⊕

λX=λ eXRC.

Proof. Since the idempotents eX are orthogonal and sum to 1, the vector space
RC decomposes into an internal direct sum of the subspaces eXRC. Since p =∑
X∈L λXeX , the action of p on eXRC is scalar multiplication by λX . �

We also obtain a combinatorial criterion for the existence of a unique stationary
distribution for the random walk. A distribution {px}x∈S is said to be separating

if for each H ∈ L with H l 1̂, there exists x ∈ S with supp(x) 6≤ H and px > 0.

Corollary 6 ([4]). T has a unique stationary distribution if and only if the proba-
bility distribution {px}x∈S is separating.

Proof. If T has a unique stationary distribution, then the multiplicity of λ1̂ is 1.

Hence, λ1̂ > λX for all X 6= 1̂. Since λ1̂ > λX , there exists x ∈ S with supp(x) 6≤ X
and px > 0. If p is separating, then λ1̂ > λH for all H ∈ L with H l 1̂, and so λ1̂ >

λX for all X 6= 1̂. Hence, the multiplicity of λ1̂ is dim(e1̂RC) = dim(Re1̂) = 1. �

We also obtain the eigenvalue multiplicities for the hyperplane chamber walks.

Corollary 7 ([1], [4]). Let T be the transition matrix for the random walk on the
chambers of a hyperplane arrangement driven by the distribution {px}x∈F . The
eigenvalues of T are {λX}X∈L, and the multiplicity of λX is

∑
λY =λX

|µ(X,V )|,
where µ is the Möbius function of L.

Proof. Most of this follows from the previous results; the only thing needing proof
is the description of the multiplicities. From the decomposition RC = ⊕X∈LeXRC,
one has dim(RC) =

∑
X dim(eXRC). The left side counts the number of chambers

of A. Comparing this with Zaslavzky’s formula for the number of chambers of an
arrangement [11], we conclude that dim(eXRC) = |µ(X,V )|. �
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4. Eigenbases

In this section we indicate how to use tools from poset topology [10] to extract
an eigenbasis for the transition matrices of the hyperplane chamber walks.

A saturated chain in L is a collection of nested subspaces X0 ⊂ X1 ⊂ · · · ⊂ Xr

in L with dim(Xi) = dim(Xi−1) + 1 for every 1 ≤ i ≤ r. Let Q denote the set of
saturated chains of L and denote by RQ the R-vector space with basis the elements
of Q. Then RQ is an algebra; the product of two saturated chains X0 ⊂ · · · ⊂ Xr

and Y0 ⊂ · · · ⊂ Ys is X0 ⊂ · · · ⊂ Xr = Y0 ⊂ · · · ⊂ Ys if Xr = Y0 and 0 otherwise.
(In the standard terminology of representation theory of algebras, Q describes the
set of paths of the quiver of RF and RQ is the path algebra of the quiver.)

In [8], an algebra surjection ϕ : RQ → RF was constructed. This map can be
defined so that the image of the vertices of Q (viewed as chains in Q of length 0)
is any complete system of primitive orthogonal idempotents. In particular, we can
define ϕ so that ϕ(X) = eX for all X ∈ L, where eX is given by Theorem 4.

In order to define the images of the arrows, fix an orientation εX on each subspace
X ∈ L: thus, εX is a function that maps an ordered basis of X to +1 or −1 in such
a way that εX(~v1, . . . , ~vd) = εX(~u1, . . . , ~ud) if and only if the change of basis matrix
mapping ~v1, . . . , ~vd to ~u1, . . . , ~ud has positive determinant. Then define numbers
[y : x] ∈ {±1} for faces x and y with supp(y) l supp(x) by

[y : x] = εsupp(x)(~y1, . . . , ~yd, ~x1),(5)

where ~y1, . . . , ~yd is a positively-oriented basis of supp(y) and ~x1 is a vector in x.
Then the image of a saturated chain Y ⊂ X in Q of length 2 is defined to be

ϕ(Y ⊂ X) = eY

(
[y : x]x+ [y : x′]x′

)
eX ,

where y is any face with supp(y) = Y and x, x′ are two faces on opposite sides of Y
with supp(x) = supp(x′) = X. Then ϕ extends uniquely to a surjection of algebras,
and the kernel of ϕ is generated as an RQ-ideal by the sum of all the chains of
length two in Q. It follows from Lemma 3 and the left-regular band identities (§2.1)
that the image under ϕ of the saturated chain X0 ⊂ X1 ⊂ · · · ⊂ Xr is of the form

±uX0

(
x1 − x′1

)(
x2 − x′2

)
· · ·
(
xr − x′r

)
eXr

,

where xi, x
′
i are two faces on opposite sides of Xi−1 with supp(xi) = supp(x′i) = Xi.

Remark 8. Recent work of Denham [5] gives a quite different approach to describing
the eigenvectors for the hyperplane chamber walks. He defines a map which is
essentially the restriction of ϕ to the subspace spanned by the saturated chains
terminating with V . Denham’s map has its origins in the study of the cohomology
of the complement of the complexified arrangement, whereas ϕ arises naturally in
the study of the representation theory of the semigroup algebra RF .

The image of the subspace of RQ spanned by all the maximal chains in the
interval [X,Y ] = {U ∈ L : X ⊆ U ⊆ Y } is the subspace eXRFeY . If Y = V , then
this image is eXRFeV = eXRC, which by Corollary 5 corresponds to an eigenspace
of the transition matrix. In particular, we get an eigenbasis by choosing appropriate
sets of maximal chains in the intervals [X,V ]. We can make use of tools from poset
topology to identify suitable choices, as we now describe.
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The subspace eXRFeY is isomorphic to the poset cohomology space H∗(X,Y )
of the interval [X,Y ]; indeed, from the description of ker(ϕ), the subspace is iso-
morphic to the vector space whose basis consists of the maximal chains in [X,Y ]
modulo the so-called “cohomology relations” (see [8] for the details).

There are various tools and techniques from poset topology that determine bases
for these cohomology spaces. One of these is an EL-labelling of the lattice L [10].
Such a labelling identifies a set of distinguished maximal chains for every interval
[X,Y ] in L, and these chains form a basis of H∗(X,Y ). Moreover, it also affords a
“straightening” algorithm that expresses an arbitrary maximal chain in [X,Y ] as a
linear combination of the distinguished chains.

The map ϕ will send these distinguished chains to an eigenbasis of RF , and the
distinguished maximal chains in [X,V ] to an eigenbasis of eXRC. Thus, we obtain
an eigenbasis for the transition matrices of the hyperplane chamber walks. Various
EL-labellings of the lattices L can be found in the literature. For instance, [2]
produces one in which the distinguished chains are labelled by non-broken circuits.
This and other examples can be found in [10].

The quiver Q of a left-regular band S can also be described by certain chains
(not necessarily saturated) in the corresponding lattice L [7]. However, the kernel
of the surjection RQ→ RS is not well understood at this level of generality.
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