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The first part of this thesis studies the face semigroup algebra of a hyperplane

arrangement. The quiver with relations of the algebra is computed and the algebra

is shown to be a Koszul algebra. Other algebraic structure is determined: a con-

struction for a complete system of primitive orthogonal idempotents; projective

indecomposable modules; Cartan invariants; projective resolutions of the simple

modules; Hochschild (co)homology; and the Koszul dual algebra. It is shown that

the algebra depends only on the intersection lattice of the hyperplane arrangement.

A new cohomology construction on posets is introduced and it is shown that the

face semigroup algebra is the cohomology algebra of the intersection lattice.

In the second part, attention is restricted to arrangements arising from finite

reflection groups. The reflection group acts on the face semigroup algebra, and the

subalgebra invariant under the group action is studied. The quiver is determined for

the case of the symmetric group. Since the invariant subalgebra is anti-isomorphic

to Solomon’s descent algebra, the quiver of the descent algebra of the symmetric

group is obtained.

The third part extends some of the results of the first part to a class of semi-

groups called left regular bands. In particular, a description of the quiver of the

semigroup algebra is given, and it is used to compute the quiver of the face semi-

group algebra of a hyperplane arrangement and of the free left regular band.
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CHAPTER 1

THE FACE SEMIGROUP ALGEBRA OF A HYPERPLANE

ARRANGEMENT

1.1 Introduction

Let A denote a finite collection of linear hyperplanes in Rd. Then A dissects Rd into

open subsets called chambers. The closures of the chambers are polyhedral cones

whose relatively open faces are called the faces of the hyperplane arrangement A.

The set F of faces of A can be endowed with a semigroup structure. Geometrically,

the product xy of faces x and y is the face entered by moving a small positive

distance along a straight line from x towards y. The k-algebra spanned by the

faces of A with this multiplication is the face semigroup algebra of the hyperplane

arrangement A. Here k denotes a field.

The face semigroup algebra kF has enjoyed recent attention due mainly to

two interesting results. The first result is that a large class of seemingly unrelated

Markov chains can be studied in a unified setting via the semigroup structure on

the faces of a hyperplane arrangement. The Markov chains are encoded as ran-

dom walks on the chambers of a hyperplane arrangement [Bidigare et al., 1999]. A

step in this random walk moves from a chamber to the product of a face with the

chamber according to some probability distribution on the faces of the arrange-

ment. This identification associates the transition matrix of the Markov chain with

the matrix of a linear transformation on the face semigroup algebra of the hyper-

plane arrangement. Questions about the Markov chain can then be answered using

algebraic techniques [Brown, 2000]. For example, a combinatorial description of the

eigenvalues with multiplicities of the transition matrix is given and the transition

1
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matrix is shown to be diagonalizable.

The second interesting result concerns the descent algebra of a finite Coxeter

group, a subalgebra of the group algebra of the Coxeter group. To any finite Coxeter

group is associated a hyperplane arrangement and the Coxeter group acts on the

faces of this arrangement. This gives an action of the Coxeter group on the face

semigroup algebra of the arrangement. The subalgebra of elements invariant under

the action of the Coxeter group is anti-isomorphic to the descent algebra of the

Coxeter group [Bidigare, 1997, Brown, 2000]. The descent algebra was introduced

in [Solomon, 1976] and the proof that it is indeed an algebra is rather involved.

This approach via hyperplane arrangements provides a new, somewhat simpler

setting for studying the descent algebra. See [Schocker, 2005].

This chapter presents a study of the algebraic structure of the face semigroup

algebra kF of an arbitrary central hyperplane arrangement in Rd. Throughout k

will denote a field of arbitrary characteristic andA a finite collection of hyperplanes

passing through the origin in Rd. The intersection lattice of A is the set L of

intersections of subsets of hyperplanes in A ordered by inclusion. (Note that some

authors order the intersection lattice by reverse inclusion rather than inclusion.)

The chapter begins with some background. Sections 1.2 and 1.3 recall notions

from the theory of posets and hyperplane arrangements. Section 1.4 defines the

face semigroup algebra of a hyperplane arrangement and describes its irreducible

representations.

In Section 1.5 a complete system of primitive orthogonal idempotents {eX}X∈L
in kF is constructed. This leads to a description of the projective indecomposable

kF -modules (Section 1.6) and a computation of the Cartan invariants of kF (see

(1.11)). The projective indecomposable modules are used to construct projective
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resolutions of the simple kF -modules in Section 1.7.

Since all the irreducible representations of kF are 1-dimensional, it follows that

kF is a quotient of the path algebra of a quiver (a directed graph). The quiver with

relations of kF is computed in Section 1.8. The vertices of the quiver correspond

to elements of the intersection lattice L. There is exactly one arrow X → Y if

Y lX, and these are the only arrows of the quiver. There is exactly one relation

for each interval of length two in L: the sum of the paths of length two in the

interval. This implies that kF depends only on the intersection lattice L of the

hyperplane arrangement.

Section 1.9 proves that kF is a Koszul algebra and computes the Ext-algebra

(or Koszul dual) of kF . It is the incidence algebra I(L∗) of the opposite poset

L∗ of L. This is used in Section 1.9.4 to compute the Hochschild homology and

cohomology of kF .

Section 1.10 explores connections with poset cohomology. The face semigroup

algebra decomposes into a direct sum of subspaces that are isomorphic to the or-

der cohomology H∗([X,Y ]) of intervals [X,Y ] of the intersection lattice L. A new

cohomology construction is introduced to explain the inherited algebraic struc-

ture on this direct sum of cohomology groups. The resulting cohomology algebra,

with its cohomology cup product, is isomorphic to kF . Finally, the Whitney co-

homology of the geometric lattice L∗ is shown to embed into kF as the projective

indecomposable kF -module spanned by the chambers of the arrangement.

1.2 Posets

This section presents some of the necessary background from the theory of posets.

An excellent reference for posets is Chapter 3 of [Stanley, 1997].
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A poset is a finite set P together with a partial order ≤. The opposite poset P ∗

of a poset P is the set P with partial order defined by x ≤ y in P ∗ iff x ≥ y in P .

For x, y ∈ P , write xl y and say y covers x or x is covered by y if x < y and there

does not exist z ∈ P with x < z < y. The Hasse diagram of P is the graph with

exactly one vertex for each x in P and exactly one edge between x and y iff xl y

or y l x. An edge of the Hasse diagram is called a cover relation.

A chain in P is a sequence of elements x0 < x1 < · · · < xr in P . A chain

x0 < x1 < · · · < xr is unrefinable if xi−1 l xi for all 1 ≤ i ≤ r. The length of

the chain x0 < x1 < · · · < xr is r. The length or rank of a poset is the length of

the longest chain in P . For x ≤ y in P the interval between x and y is the set

[x, y] = {z ∈ P | x ≤ z ≤ y}. The interval [x, y] is a poset and its rank is denoted

by `([x, y]).

A (finite) poset L is a lattice if every pair of elements x, y in L has a least

upper bound (called join) x ∨ y and a greatest lower bound (called meet) x ∧ y
(with respect to the relation ≤). There exists an element 0̂ called the bottom of L

satisfying 0̂ ≤ x for all x ∈ L. Similarly, there exists an element 1̂ in L called the

top of L satisfying x ≤ 1̂ for all x ∈ L.

The Möbius function µ of a finite poset P is defined recursively by the equations

µ(x, x) = 1 and µ(x, y) = −
∑
x≤z<y

µ(x, z),

for all x < y in P . If x 6< y, then set µ(x, y) = 0. The Möbius inversion formula

[Stanley, 1997, §3.7] states that g(x) =
∑

y≤x f(y) iff f(x) =
∑

y≤x g(y)µ(y, x),

where f, g : P → R.
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1.3 Hyperplane Arrangements

This section recalls some definitions from the theory of hyperplane arrangements

(see [Orlik and Terao, 1992]).

1.3.1 Hyperplane Arrangements

A hyperplane arrangement A in Rd is a finite set of hyperplanes in Rd. We restrict

our attention to central hyperplane arrangements where all the hyperplanes contain

0 ∈ Rd. Each hyperplane H ∈ A determines two open half-spaces of Rd denoted

H+ and H−. The choice of which half-space to label + or − is arbitrary, but fixed.

1.3.2 The Face Poset

A face of A is a nonempty intersection of the form

x =
⋂
H∈A

HσH ,

where σH ∈ {+,−, 0} and H0 = H. The sequence σ(x) = (σH)H∈A is the sign

sequence of x. A chamber c is a face such that σH(c) 6= 0 for all H ∈ A.

The face poset F of A is the set of faces of A partially ordered by

x ≤ y ⇐⇒ for each H ∈ A either σH(x) = 0 or σH(x) = σH(y).

Equivalently, x ≤ y ⇐⇒ x ⊂ ȳ. If x ≤ y, then we say x is a face of y. Note that

the chambers are the maximal elements in this partial order.
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1.3.3 The Support Map and the Intersection Lattice

The support of a face x ∈ F is the the intersection of the hyperplanes in A
containing x,

supp(x) =
⋂

H∈A
σH (x)=0

H.

The set L = supp(F) of supports of faces of A is a graded lattice ordered by

inclusion, called the intersection lattice of A. (Some authors order the intersection

lattice by reverse inclusion, so some care is needed while reading the literature.)

The rank of X ∈ L is the dimension of the subspace X ⊂ Rd if the intersection of

all the hyperplanes in the arrangement is trivial. For X, Y ∈ L the meet X ∧ Y
of X and Y is the intersection X ∩ Y and the join X ∨ Y of X and Y is X + Y ,

the smallest subspace of Rd containing X and Y . The opposite poset L∗ of L is

a geometric lattice. The top element 1̂ of L is the ambient vector space Rd and

the bottom element 0̂ is the intersection of all hyperplanes in the arrangement

⋂
H∈AH. The chambers are the faces of support 1̂. Since supp(x) ≤ supp(y) if

x ≤ y, the support map supp : F → L is an order-preserving poset surjection.

1.3.4 Deletion and Restriction

Fix X ∈ L. The faces y of A with supp(y) ≤ X are the faces of the arrangement

AX = {H ∩ X | X 6≤ H ∈ A}. AX is the restriction to X and the face poset of

AX is denoted by F≤X . The intersection lattice L≤X of AX is the interval [0̂, X]

of L.

Given X ∈ L let AX = {H ∈ A | X ⊂ H} denote the set of hyperplanes in A
containing X. AX is a deletion of A. If x ∈ F with supp(x) = X, then the face

poset FX of AX is isomorphic to the subposet of F of all faces having x as a face:
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FX ∼= {y ∈ F | x ≤ y}. The intersection lattice of AX is the interval [X, 1̂] ⊂ L.

1.4 The Face Semigroup Algebra

This section recalls the semigroup structure on the faces of a hyperplane arrange-

ment and the irreducible representations of the resulting semigroup algebra. See

[Brown, 2000] for details.

1.4.1 The Face Semigroup

For x, y ∈ F the product xy is the face of A with sign sequence

σH(xy) =





σH(x), if σH(x) 6= 0,

σH(y), if σH(x) = 0.

This product is associative and noncommutative with identity element the inter-

section of all the hyperplanes in the arrangement 1 =
⋂
H∈AH. Note that the

support of the identity element 1 is 0̂ (and not 1̂). The support map supp : F → L
satisfies supp(xy) = supp(x) ∨ supp(y) for all x, y ∈ F . Therefore supp is a semi-

group surjection, where L is considered a semigroup with product given by join ∨,

as well as an ordering-preserving poset surjection.

Remark 1.1. There is a nice geometric interpretation of this product. The face xy

is the face that one enters by moving a small positive distance along any straight

line from x to y.

Proposition 1.2. For all x, y ∈ F ,

1. x2 = x,

2. xyx = xy,
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3. xy = y iff x ≤ y,

4. xy = x iff supp(y) ≤ supp(x),

5. supp(xy) = supp(x) ∨ supp(y),

Remark 1.3. Conditions (1) and (2) of the proposition say that F is a left regular

band.

1.4.2 The Face Semigroup Algebra

The face semigroup algebra of A with coefficients in the field k is the semigroup

algebra kF of the face semigroup F of A. Explicitly, it consists of linear combi-

nations of elements of F with multiplication induced by the product of F . The

face semigroup algebra kF is a finite dimensional associative algebra with identity

1 =
⋂
H∈AH.

Unless explicitly stated otherwise, no assumptions will be made on the charac-

teristic of the field k.

1.4.3 Irreducible Representations

This section summarizes Section 7.2 of [Brown, 2000] constructing the irreducible

representations of kF .

Since F and L are semigroups, the support map supp : F → L extends linearly

to a surjection of algebras supp : kF → kL. The kernel of this map is nilpotent

and the semigroup algebra kL is isomorphic to a product of copies of the field k,

one copy for each element of L. This implies that ker(supp) is the Jacobson radical

of kF and that the irreducible representations of kF are given by the components

of the composition kF supp−→ kL ∼=−→ ∏
X∈L k. This last map sends X ∈ L to the
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vector with 1 in the Y -position if Y ≥ X and 0 otherwise. The X-component of

this surjection is the map χX : kF → k defined on the faces y ∈ F by

χX(y) =





1, if supp(y) ≤ X,

0, otherwise.

The elements

EX =
∑
Y≥X

µ(X, Y )Y, (1.4.1)

one for each X ∈ L, correspond to the standard basis vectors of
∏

X∈L k under

the isomorphism kL ∼= ∏
X∈L k above. They form a basis of kL and also form a

complete system of primitive orthogonal idempotents (see Section 1.5).

1.5 Primitive Idempotents

Let A be a k-algebra. An element e ∈ A is idempotent if e2 = e. It is a primitive

idempotent if e is idempotent and we cannot write e = e1 + e2 where e1 and e2

are nonzero idempotents in A with e1e2 = 0 = e2e1. Equivalently, e is primitive iff

Ae is an indecomposable A-module. A set of elements {ei}i∈I ⊂ A is a complete

system of primitive orthogonal idempotents for A if ei is a primitive idempotent

for every i, if eiej = 0 for i 6= j and if
∑

i ei = 1. If {ei}i∈I is a complete system

of primitive orthogonal idempotents for A, then A ∼= ⊕
i∈I Aei as left A-modules

and A ∼= ⊕
i,j∈I eiAej as k-vector spaces.
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1.5.1 A Complete System of Primitive Orthogonal Idem-

potents

For each X ∈ L, fix an x ∈ F with supp(x) = X and define elements in kF
recursively by the formula,

eX = x−
∑
Y >X

xeY . (1.5.1)

Note that e1̂ is an arbitrarily chosen chamber.

Lemma 1.4. Let w ∈ F and X ∈ L. If supp(w) 6≤ X, then weX = 0.

Proof. We proceed by induction on X. This is vacuously true if X = 1̂. Suppose

the result holds for all Y ∈ L with Y > X. Suppose w ∈ F and W = supp(w) 6≤ X.

Using the definition of eX and the identity wxw = wx (Proposition 1.2 (2)),

weX = wx−
∑
Y >X

wxeY = wx−
∑
Y >X

wx(weY ).

By induction, weY = 0 if W 6≤ Y . Therefore, the summation runs over Y with

W ≤ Y . But Y > X and Y ≥ W iff Y ≥ W ∨X, so the summation runs over Y

with Y ≥ W ∨X.

weX = wx−
∑
Y >X

wx(weY ) = wx−
∑

Y≥X∨W
wxeY .

Now let z be the element of support X ∨W chosen in defining eX∨W . So eX∨W =

z − ∑
Y >X∨W zeY . Note that zeX∨W = eX∨W since z = z2. Therefore, z =

∑
Y≥X∨W zeY . Since supp(wx) = W ∨ X = supp(z), it follows from Proposition

1.2 (4) that wx = wxz. Combining the last two statements,

weX = wx−
∑

Y≥X∨W
wxeY = wx

(
z −

∑
Y≥X∨W

zeY

)
= 0.
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Theorem 1.5. The elements {eX}X∈L form a complete system of primitive or-

thogonal idempotents in kF .

Proof. Complete. 1 =
⋂
H∈AH is the only element of support 0̂. Hence, e0̂ =

1−∑
Y >0̂ eY . Therefore,

∑
X

eX = e0̂ +
∑

X 6=0̂

eX =


1−

∑

X>0̂

eX


 +

∑

X 6=0̂

eX = 1.

Idempotent. Since eY is a linear combination of elements of support at least Y ,

eY z = eY for any z with supp(z) ≤ Y (Proposition 1.2 (4)). Using the definition

of eX , the facts eX = xeX and eY = eY y, and Lemma 1.4,

e2
X =

(
x−

∑
Y >X

xeY

)
eX = xeX −

∑
Y >X

xeY (yeX) = xeX = eX .

Orthogonal. We show that for every X ∈ L, eXeY = 0 for Y 6= X. If X = 1̂,

then eXeY = eXxeY = 0 for every Y 6= X by Lemma 1.4 since X = 1̂ implies

X 6≤ Y . Now suppose the result holds for Z > X. That is, eZeY = 0 for all

Y 6= Z. If X 6≤ Y , then eXeY = 0 by Lemma 1.4. If X < Y , then eXeY =

xeY −
∑

Z>X x(eZeY ) = xeY − xe2Y = 0.

Primitive. We’ll show that eX liftsEX =
∑

Y≥X µ(X, Y )Y (see equation (1.4.1))

for all X ∈ L, a primitive idempotent in kL. If X = 1̂, then supp(e1̂) = 1̂ = E1̂.

Suppose the result holds for Y > X. Then supp(eX) = supp(x − ∑
Y >X xeY ) =

X − ∑
Y >X(X ∨ EY ). Since EY is a linear combination of elements Z ≥ Y , it

follows that X ∨ EY = EY if Y > X. Therefore, supp(eX) = X −∑
Y >X EY . The

Möbius inversion formula applied to EX =
∑

Y≥X µ(X,Y )Y gives X =
∑

Y≥X EX .

Hence, supp(eX) = X −∑
Y >X EY = EY .

To see that this is sufficient, suppose E is a primitive idempotent in kL and that

e is an idempotent lifting E. Suppose e = e1 + e2 with ei orthogonal idempotents.
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Then E = supp(e) = supp(e1) + supp(e2). Since E is primitive and supp(e1)

and supp(e2) are orthogonal idempotents, supp(e1) = 0 or supp(e2) = 0. Say

supp(e1) = 0. Then e1 is in the kernel of supp. This kernel is nilpotent so en1 = 0

for some n ≥ 0. Hence e1 = en1 = 0. Therefore, e is a primitive idempotent.

Remark 1.6. We can replace x ∈ F in (1.5.1) with any linear combination x̃ =

∑
supp(x)=X λxx of elements of support X whose coefficients λx sum to 1. The proofs

still hold since the element x̃ is idempotent and satisfies supp(x̃) = X and x̃y = x̃

if supp(y) ≤ X. Unless explicitly stated we will use the idempotents constructed

above.

1.5.2 A Basis of Primitive Idempotents

Proposition 1.7. The set {xesupp(x) | x ∈ F} is a basis of kF of primitive idem-

potents.

Proof. Let y ∈ F . Then by Corollary 1.5 and Lemma 1.4,

y = y1 = y
∑
X

eX =
∑

X≥supp(y)

yeX =
∑

X≥supp(y)

(yx)eX .

Since supp(yx) = supp(y)∨ supp(x) = X, the face y is a linear combination of the

elements of the form xesupp(x). So these elements span kF . Since the number of

these elements is the cardinality of F , which is the dimension of kF , the set forms a

basis of kF . The elements are idempotent since (xeX)2 = (xeX)(xeX) = xe2X = xeX

(since xyx = xy for all x, y ∈ F). Since xeX also lifts the primitive idempotent

EX =
∑

Y≥X µ(X, Y )Y ∈ kL, it is also a primitive idempotent (see the end of the

proof of Corollary 1.5).
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1.6 Projective Indecomposable Modules

This section constructs the projective indecomposable kF -modules and computes

the Cartan invariants of kF .

1.6.1 Projective Indecomposable Modules

For X ∈ L, let FX ⊂ F denote the set of faces of support X. For y ∈ F and

x ∈ FX let

y · x =





yx, supp(y) ≤ supp(x),

0, supp(y) 6≤ supp(x).

Then kFX is a kF -module.

Lemma 1.8. Let X ∈ L. Then {yeX | supp(y) = X} is a basis for kFeX .

Proof. Suppose
∑

w∈F λwweX ∈ kFeX . If supp(w) 6≤ X, then weX = 0. So suppose

supp(w) ≤ X. Then supp(wx) = supp(w) ∨X = X. Therefore,

∑
w∈F

λwweX =
∑
w∈F

λw(wx)eX ∈ spank{yeX | supp(y) = X},

where x is the element chosen in the construction of eX (recall that eX = xeX since

x2 = x). So the elements span kFeX . These elements are linearly independent being

a subset of a basis of kF (Proposition 1.7).

Proposition 1.9. The kF-modules kFX are all the projective indecomposable kF-

modules. The radical of kFX is spank{y − y′ | y, y′ ∈ FX}.

Proof. Define a map φ : kFX → kFeX by w 7→ weX . Then φ is surjective since

φ(y) = yeX for y ∈ FX and since {yeX | supp(y) = X} is basis for kFeX (Lemma
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1.8). Since dim kFX = #FX = dim kFeX , the map φ is an isomorphism of k-vector

spaces.

φ is a kF-module map. Let y ∈ F and let x ∈ FX . If supp(y) ≤ X, then

φ(y · x) = φ(yx) = yxeX = yφ(x). If supp(y) 6≤ X, then y · x = 0. Hence,

φ(x · y) = 0. Also, since supp(y) 6≤ X, it follows that yeX = 0. Therefore, yφ(x) =

yxeX = yx(yeX) = yx0 = 0. So φ(y · x) = yφ(x). Hence φ is an isomorphism of

kF -modules. Since kFeX are all the projective indecomposable kF -modules, so

are the kFX .

1.6.2 Cartan Invariants

Let {eX}X∈I be a complete system of primitive orthogonal idempotents for a finite

dimensional k-algebra A. The Cartan invariants of A are defined to be the numbers

cX,Y = dim HomA(AeX , AeY ).

The invariant cX,Y is the multiplicity of the simple module SX = (A/radA)eX as

a composition factor of AeY . The Cartan matrix of A is the matrix [cX,Y ].

The following is Theorem 1.7.3 of [Benson, 1998].

Theorem 1.10 (Idempotent Refinement Theorem). Let N by a nilpotent

ideal in a ring R and let e be an idempotent in R/N . Then any two idempotents

in R lifting e are conjugate in R.

Proposition 1.11. For X, Y ∈ L,

dimk HomkF(kFeX , kFeY ) = |µ(X,Y )|,

where µ is the Möbius function of L. Therefore the Cartan invariants of kF are

cX,Y = |µ(X,Y )| and the Cartan matrix is triangular of determinant 1.
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Proof. Since HomkF(kFeX , kFeY ) ∼= eXkFeY , it follows that cX,Y = dim eXkFeY .

We will use Zaslavsky’s Theorem [Zaslavsky, 1975]: The number of chambers in a

hyperplane arrangement is
∑

X∈L |µ(X,Rd)|.
For each W ∈ L, let w denote an element of support W . If W ≥ X, then

supp(xw) = W , so replace w with xw and construct idempotents eW as in section

1.5.1. (By the idempotent refinement theorem above, it does not matter which lifts

of the idempotents in kL we use to compute the Cartan invariants: eXkFeY ∼=
ẽXkF ẽY if eX and ẽX are conjugate and if eY and ẽY are conjugate.) Then for each

W ≥ X we have xeW = eW , so x = x
∑

W eW = x
∑

W≥X eW =
∑

W≥X eW . This

gives the equality

k(xF) = xkF =
∑
W≥X

eWkF . (1.6.1)

Note that xF is the face poset of the hyperplane arrangement AX = {H ∈ A |
X ⊂ H} and that the faces of support Y in AX are the chambers in the restricted

arrangement (AX)Y (see Section 1.3.4). Zaslavsky’s Theorem applied to (AX)Y

gives the number of faces of support Y in AX is
∑

W∈[X,Y ] |µ(W,Y )| since the

intersection lattice of (AX)Y is the interval [X, Y ] in L. But the number of faces

of support Y in (AX)Y is the cardinality of the set xFY , which is the dimension

of k(xFY ) ∼= xkFY ∼= xkFeY ∼= ⊕
X≤W≤Y eWkFeY by (1.6.1) and Lemma 1.4.

Therefore for each X, Y ∈ L,

∑
X≤W≤Y

dim eWkFeY =
∑

X≤W≤Y
|µ(W,Y )|.

The result now follows by induction. If X = Y , then dim eXkFeX = |µ(X,X)|.
Suppose the result holds for all W with X < W ≤ Y . Then

dim eXkFeY =
∑

X≤W≤Y
|µ(W,Y )| −

∑
X<W≤Y

dim eWkFeY
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=
∑

X≤W≤Y
|µ(W,Y )| −

∑
X<W≤Y

|µ(W,Y )|

= |µ(X, Y )|.

1.7 Projective Resolutions of the Simple Modules

1.7.1 A Projective Resolution of the Simple Module Cor-

responding to 1̂

In Section 5C of [Brown and Diaconis, 1998] an exact sequence of kF -modules is

constructed to compute the multiplicities of the eigenvalues of random walks on the

chambers of a hyperplane arrangement. This construction in combination with the

above description of the projective indecomposable kF -modules yields a projective

resolution of the simple kF -modules.

Let Fp ⊂ F denote the set of faces of codimension p. For x ∈ F and y ∈ Fp,
let

x · y =





xy, supp(x) ≤ supp(y),

0, supp(x) 6≤ supp(y).

Fix an orientation εX for every subspace X ∈ L. If x is a codimension one face

of y, then pick a positively oriented basis {e1, . . . , ei} of X = supp(x) and a vector

v in y and put

[x : y] = εY (e1, · · · , ei, v),

where Y = supp(y). Since X is a codimension one subspace of Y , the mapping

v 7→ εY (e1, · · · , ei, v) is constant on the open halfspaces of Y determined by X.

This implies the identity,

[x : y] = [x̃ : x̃y], if supp(x̃) = supp(x). (1.7.1)
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Lemma 1.12 ([Brown and Diaconis, 1998], §5 Lemma 2). Let x, y ∈ F with

x of codimension two in y. Then there are exactly two faces w and z in the open

interval (x, y) and we have

[x : w][w : y] = −[x : z][z : y].

Proposition 1.13 ([Brown and Diaconis, 1998], §5 Lemma 4). The follow-

ing is an exact sequence of kF-modules.

· · · // kFp ∂p // · · · // kF1
∂1 // kF0

∂0 // k // 0,

where the action of kF on k is given by w · λ = λ for all w ∈ F and λ ∈ k. The

differential ∂i is given by ∂0(c) = 1 for all c ∈ F0 and for x ∈ Fp,

∂p(x) =
∑
ymx

[x : y]y.

Sketch of the proof. It is easy to check that the complex consists of kF -modules

and that ∂i is a kF -module map. It remains to explain why the complex is exact.

Suppose that the intersection of all the hyperplanes in a point, otherwise quotient

out by that subspace. Intersecting the hyperplane arrangement with a sphere cen-

tered at the origin induces a regular cell decomposition Σ of the (d − 1)-sphere

whose cells correspond to the faces x 6= 1 of A. The dual of Σ is the boundary of a

polytope (a zonotope, actually) Z. Therefore, the poset of nonempty faces of Z is

anti-isomorphic to the face poset F of A. Since Z is contractible any augmented

cellular chain complex will be an exact sequence of k-vector spaces. The above

complex is precisely the augmented cellular chain complex with incidence numbers

given by [x : y]. (See [Cooke and Finney, 1967].) Therefore, it is exact.

Note that kFp ∼=
⊕

codim(X)=p kFX as kF -modules and that kFX is projective

by Proposition 1.9, where codim(X) is the codimension of the subspace X. So the
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kF -modules kFp are projective. Also note that in order for ∂0 to be a kF -module

morphism, the action of kF on k must be given by χ1̂. That is, k is the simple

module afforded by the irreducible representation χ1̂. This proves the following

result.

Corollary 1.14. The exact sequence

· · · // kFp ∂p // · · · // kF1
∂1 // kF0

∂0 // k // 0

is a projective resolution of the simple kF-module afforded by the irreducible rep-

resentation χ1̂ : kF → k.

1.7.2 Projective Resolutions of the Simple Modules

Recall that the simple kF -modules are indexed by X ∈ L, afforded by the repre-

sentations χX : kF → k,

χX(y) =





1, if supp(y) ≤ X,

0, otherwise.

Also recall that F≤X denotes the face semigroup of AX , consisting of the set of

faces in F of support contained in X (Section 1.3.4). Let (F≤X)p denote the set of

faces in AX of codimension p in X. Applying the previous result to the hyperplane

arrangement AX gives a projective resolution

· · · −→ k(F≤X)p
∂−→ · · · ∂−→ k(F≤X)1

∂−→ kFX −→ kX −→ 0

of the simple kF≤X-module kX with action given by w ·λ = λ for all w ∈ F≤X and

λ ∈ k. The algebra surjection kF → kF≤X given by w 7→ χX(w)w for w ∈ F puts

a kF -module structure on each k(F≤X)p and on k. The kF -module structure on k
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is precisely that given by χX : kF → k. Each k(F≤X)p is a projective kF -module

since the kF -module structure on k(F≤X)p decomposes as

k(F≤X)p ∼=
⊕
Y≤X,

codimX (Y )=p

kFY ,

where codimX(Y ) denotes the codimension of Y in X. This establishes the follow-

ing.

Proposition 1.15. Let X ∈ L. Then

· · · −→




⊕
Y ∈L

codimX (Y )=p

kFY


 ∂−→ · · · ∂−→ kFX −→ kX −→ 0

is a projective resolution of the simple kF-module kX afforded by χX : kF → k,

where ∂(w) =
∑

ymw[w : y]χX(y)y and codimX(Y ) denotes the codimension of Y

in X.

1.8 The Quiver of the Face Semigroup Algebra

1.8.1 The Quiver of a Split Basic Algebra

A finite dimensional k-algebra A is a (split) basic algebra if every simple module of

A has dimension one. The Ext-quiver or just quiver Q of a split basic algebra A is

a directed graph with one vertex for each isomorphism class of simple modules of

A. The number of arrows x → y is dim Ext1
A(Sx, Sy), where Sx and Sy are simple

modules corresponding to the vertices x and y.

A path p in Q is a sequence of arrows x0 → x1 → · · · → xr. The path starts

at s(p) = x0 and terminates at t(p) = xr. The length of p is r. Two paths p

and q are parallel if they start and terminate at the same vertices: s(p) = s(q)

and t(p) = t(q). The path algebra kQ of a quiver Q is the k-vector space spanned
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by the paths in Q with the product of two paths defined by path composition: if

p = x0 → x1 → · · · → xr and q = y0 → y1 → · · · → ys, then

p · q =





y0 → · · · → ys → x1 → · · · → xr, if x0 = s(p) = t(q) = ys,

0, otherwise.

Let P ⊂ kQ be the ideal of kQ generated by the arrows of Q. An ideal I ⊂ kQ

is admissible if I ⊂ P 2.

Proposition 1.16 ([Auslander et al., 1995], §III.1 Thereom 1.9). Let A be

a finite dimensional split basic k-algebra with quiver Q. Then A ∼= kQ/I where I

is an admissible ideal of kQ.

Let I be an admissible ideal of kQ. An element of I is a relation from x to y

if it is a k-linear combination of paths in Q beginning at a vertex x and ending at

a vertex y. Note that any element ρ ∈ I can be written as a linear combination

of relations since xρy is a relation for any pair of vertices x, y ∈ Q. The following

result combines Corollary 1.1 and Proposition 1.2 of [Bongartz, 1983]. For the

convenience of the reader a proof of this result is included in an appendix to this

chapter.

Proposition 1.17. Let Q be a quiver with no oriented cycles and let I be an

admissible ideal. Suppose that R is a minimal set of relations generating I as

a two-sided ideal of kQ. Then the number of relations from x to y in R is the

dimension of the k-vector space Ext2
kQ/I(Sx, Sy).

1.8.2 The Quiver of the Face Semigroup Algebra

Since every simple kF -module is of dimension one, kF is a split basic algebra. In

this section we’ll compute the quiver Q of kF and in the next section we’ll describe
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an ideal I such that kQ/I ∼= kF .

Lemma 1.18. For X, Y ∈ L and p ≥ 0,

ExtpkF(kX , kY ) ∼=





k, if Y ≤ X and dim(X)− dim(Y ) = p,

0, otherwise.

Proof. Let codimX(W ) denote the codimension of W in X and let Cp denote

⊕
codimX(W )=p kFW . Applying the functor Hom(−, kY ) to the projective resolution

of kX in Proposition 1.15, gives the cocomplex

· · · ∂∗p−→ HomkF (Cp, kY )
∂∗p+1−→ HomkF (Cp+1, kY )

∂∗p+2−→ · · · .

Now HomkF (Cp, kY ) ∼= ⊕
codimX(W )=p HomkF (kFW , kY ) and

HomkF (kFW , kY ) ∼= HomkF (kFeW , kY ) ∼= eW · kY =





k, if W = Y,

0, otherwise,

where we used the fact that χY (eW ) = 0 if W 6= Y and 1 otherwise. (If W 6= Y ,

then χY (eY ) = 1 implies χY (eW ) = χY (eW )χY (eY ) = χY (eW eY ) = 0.) Since

HomkF(kFW , kY ) vanishes unless W = Y , the entries in the above cocomplex

vanish in all degrees except for that in which kFY appears. This degree is precisely

codimX(Y ) = dim(X)− dim(Y ), in which case HomkF(kFY , kY ) ∼= k.

Corollary 1.19. The quiver Q of kF is given by the Hasse diagram of the inter-

section lattice L. The cover relations are oriented by X → Y ⇐⇒ X m Y .

Proof. The vertices of Q are in one-to-one correspondence with the isomorphism

classes of simple kF -modules. These are indexed by the elements of L. The number

of arrows X → Y is

dim Ext1
kF(kX , kY ) =





1, if X m Y,

0, otherwise.
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1.8.3 Quiver Relations

This section defines a k-algebra surjection ϕ : kQ → kF and identifies a minimal

generating set of the kernel. The kernel is an admissible ideal of the path algebra

kQ, so this generating set gives the quiver relations.

1.8.3A. First Version

Let ∂ : kF → kF be the map

∂(y) =
∑
x∈kF
xmy

[y : x]x,

where [y : x] is the incidence number defined in equation (1.7.1). Define a k-algebra

morphism ϕ : kQ −→ kF by

ϕ(X) = eX for X ∈ Q0,

ϕ(X → Y ) = eY ∂(y)eX ,

ϕ(X0 → X1 → · · · → Xr) = ϕ(Xr−1 → Xr) · · ·ϕ(X0 → X1),

where y was chosen in the construction of eY . (Actually, y can be any element

of support Y . This follows from the identity xx′ = x iff supp(x) ≥ supp(x′).)

Using Lemma 1.4 and that eY = y −∑
Z>Y yeZ , it follows that eY ∂(y)eX = ([y :

x1]x1 + [y : x2]x2)eX where x1 and x2 are the two faces of support X with common

codimension one face y. In particular, this is nonzero.

Proposition 1.20. Let ϕ : kQ → kF be the map defined above. For each interval

[Z,X] of length two in L, the sum of all paths of length two from X to Z

∑

Y ∈(Z,X)

(X → Y → Z)

is an element of the kernel of ϕ. These elements form a minimal generating set of

relations for the kernel of ϕ.
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Proof. If R is a minimal set of relations generating kerϕ, then Proposition 1.17

gives that the number of elements of Z.R.X (the number of relations in R starting

at X and ending at Z) is dim Ext2
kF(kX , kZ). This is 1 if [Z,X] is an interval of

length two and 0 otherwise. Therefore, we need only one relation for each interval

of length two in L.

Let z be the element of support Z chosen in the construction of eZ . Then

∑
Y ∈(Z,X) ϕ(X → Y → Z) is a linear combination of elements of the form x̃eX with

x̃ of support X having z as a face. If x̃ has z as a face, then z is of codimension

two in x̃. Lemma 1.12 gives that x̃ has exactly two codimension one faces ỹ and

w̃. Since

ϕ(supp(ỹ) → Z)ϕ(X → supp(ỹ))

= ([z : ỹ]ỹ + [z : y′]y′)([y : x1]x1 + [y : x2]x2)eX

and one of ỹx1 or ỹx2 must be x̃ — suppose ỹx1 = x̃ — we see that x̃eX appears

in ϕ(X → supp(ỹ) → Z) with coefficient [z : ỹ][y : x1]. The identity (1.7.1) gives

this coefficient is [z : ỹ][ỹ : x̃]. Similarly, x̃eX appears in ϕ(X → supp(w̃) → Z)

with coefficient [z : w̃][w̃ : x̃]. Lemma 1.12 shows that these two coefficients sum

to zero. Therefore,
∑

Y ∈(Z,X) ϕ(X → Y → Z) = 0.

Corollary 1.21. The face semigroup algebra kF of a hyperplane arrangement

depends only on the intersection lattice L.

Note that this implies that arrangements with the same intersection lattice but

nonisomorphic face posets have isomorphic face semigroup algebras.
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1.8.3B. Second Version

In this section we note that the idempotents eX used in the previous section to

define ϕ can be changed slightly without affecting the kernel of ϕ. This will be

used in the next chapter.

For each X ∈ L let LX denote a nonempty set of elements of support X and let

λX = |LX |. In what follows we will need that the characteristic of k does not divide

λX for all X ∈ L. Let X̃ denote the sum of the elements in LX divided by λX . Then

X̃ is an idempotent and the elements eX = X̃−∑
Y >X X̃eY form a complete system

of primitive orthogonal idempotents in kF (see Remark 1.6). Define ϕ : kQ → kF
using these idempotents: the image of vertex X is the idempotent eX ; the image

of an arrow X → Y is eY ∂(y)eX , where y is any element of support Y .

To see that the kernel of ϕ is described by Proposition 1.20, let (X → Y → Z)

be a path in Q and note that ϕ(X → Y → Z) can be written as

1

λZ

∑
z∈LZ

(
[z : yz1]yz1 + [z : yz2]yz2

)(
[y : xy1]xy1 + [y : xy2]xy2

)
eX ,

where yz1 and yz2 are the two faces of support Y with z as a face and xy1 and xy2 are the

two faces of supportX with y as a face. (Use Lemma 1.4; that eX = X̃−∑
Y >X X̃eY

for all X ∈ L; and Proposition 1.2.)

Next we will show that the ceofficient of yzi x
y
j in the above is 1

λZ
[z : yzi ][y : xyj ].

This amounts to showing that if yzi x
y
j = yz

′
i′ x

y
j′ , then z = z′, i = i′ and j = j′. Well,

both z and z′ are faces of yzi x
y
j = yz

′
i′ x

y
j′ , but no face can have two distinct faces of

the same support. So z = z′. Also, yzi and yzi′ are faces of yzi x
y
j = yzi′x

y
j′ of the same

support, so in fact i = i′. Since yzi x
y
j = yzi x

y
j′ , it follows that xyj and xyj′ are on the

same side of Y . But, by definition, they are on different sides of Y . So j = j′.

Let x ∈ F have support X and suppose xeX is a summand of ϕ(X → Y → Z).
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Then x = yzi x
y
j for some i, j ∈ {1, 2}, z ∈ LZ . Since there are exactly two faces w1

and w2 in the open interval {w ∈ F : z < w < x}, it follows that yzi is either w1 or

w2. In the former case the coefficient of xeX is

1

λZ
[z : w1][y : xyj ] =

1

λZ
[z : w1][w1y

′ : w1x
y
j ] =

1

λZ
[z : w1][w1 : x],

using Equation (1.7.1). Similarly, if y = w2, then the coefficient is 1
λZ

[z : w2][w2 : x].

Therefore, the coefficient of xeX in
∑

XlYlZ ϕ(X → Y → Z) is, by Lemma 1.12,

1

λZ
[z : w1][w1 : x] +

1

λZ
[z : w2][w2 : x] = 0.

So
∑

XlYlZ ϕ(X → Y → Z) = 0 since {xeX : supp(x) = X} is a basis of kFeX .

1.9 The Ext-algebra of the Face Semigroup Algebra

1.9.1 Koszul Algebras

Our treatment of Koszul algebras closely follows [Beilinson et al., 1996]. Let k be

a field. A k-algebra A is a graded k-algebra if there exists a k-vector space decom-

position A ∼= ⊕
i≥0Ai satisfying AiAj ⊂ Ai+j. Here AiAj is the set of elements

{∑l ala
′
l | al ∈ Ai, a

′
l ∈ Aj}. The subspace A0 is considered an A-module by

identifying it with the A-module A/
⊕

i>0Ai.

If A =
⊕

i≥0Ai is a graded k-algebra, then a graded A-module M is an A-

module with a vector space decomposition M =
⊕

i∈ZMi satisfying AiMj ⊂Mi+j

for all i, j ∈ Z. A graded A-module M is generated in degree i if Mj = 0 for

j < i and Mj = Aj−iMi for all j ≥ i. If M and N are graded A-modules, then an

A-module morphism f : M → N has degree p if f(Mi) ⊂ Ni+p for all i.

A graded A-module M has a linear resolution if M admits a projective resolu-
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tion

· · · −−−→ P2
d2−−−→ P1

d1−−−→ P0
d0−−−→ M −−−→ 0,

with Pi a graded A-module generated in degree i and di a degree 0 morphism form

all i ≥ 0. Observe that if M admits a linear resolution, then M is generated in

degree 0.

Definition 1.22. A graded k-algebra A =
⊕

i≥0Ai is a Koszul algebra if A0 is

a semisimple k-algebra and A0, considered as a graded A-module concentrated in

degree 0, admits a linear resolution.

A quadratic k-algebra is a graded k-algebra A =
⊕

i≥0Ai such that A0 is

semisimple and A is generated by A1 over A0 with relations of degree 2. Explicitly,

A =
⊕

i≥0Ai is quadratic if A0 is semisimple and A is a quotient of the free tensor

algebra TA0A1 =
⊕

i≥0(A1)
⊗i of the A0-bimodule A1 by an ideal generated by

elements of degree 2: A ∼= TA0A1/〈R〉 with R ⊂ A1 ⊗A0 A1. Here (A1)
⊗i denotes

the i-fold tensor product of A1 over A0.

Proposition 1.23 ([Beilinson et al., 1996], Corollary 2.3.3). Koszul algebras

are quadratic.

Not all quadratic algebras are Koszul algebras. Furthermore, it is not known

for which algebras the notions of quadratic and Koszul coincide.

Let A = TA0A1/〈R〉 be a quadratic algebra. If V is an A0-bimodule, let V ∗ =

HomA0(V,A0). For any subset W ⊂ V , let W⊥ = {f ∈ V ∗ | f(W ) = 0}. The

algebra

A! = TA0A
∗
1/〈R⊥〉

is the quadratic dual of A or the Koszul dual of A in the case when A is a Koszul

algebra. (There is an important technicality. In defining the quadratic dual the
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identification (V ∗
1 ⊗ · · · ⊗ V ∗

n ) ∼= (Vn⊗ · · · ⊗ V1)
∗ has been made, where (f1⊗ · · · ⊗

fn)(vn ⊗ · · · ⊗ v1) = fn(vnfn−1(vn−1 · · · f1(v1) · · · )) for all fi ∈ V ∗
i and vi ∈ Vi.)

If A is a graded k-algebra, then the Ext-algebra of A is the graded k-algebra

Ext(A) =
⊕

n Extn(A0, A0) with multiplication given by Yoneda composition.

Theorem 1.24 ([Beilinson et al., 1996], Theorem 2.10.1 and Theorem

2.10.2). Suppose A is a Koszul algebra. Then the Koszul dual A! is a Koszul algebra

isomorphic to the opposite of the Ext-algebra Ext(A) of A and Ext(Ext(A)) ∼= A.

Before proceeding, we record how the quadratic dual of a quadratic algebra

arising as the quotient of the path algebra of a quiver is constructed from the

quiver and relations. Note that the path algebra kQ of a quiver Q is the free

tensor algebra of the k-vector space kQ1 spanned by the arrows of Q viewed as

a bimodule over the k-vector space kQ0 spanned by the vertices of Q. It follows

that A = kQ/〈R〉 ∼= TkQ0kQ1/〈R〉 where R is a set of relations of paths of length

two. Then the quadratic dual algebra A! ∼= TkQ0(kQ1)
∗/〈R⊥〉 ∼= kQopp/〈R⊥〉 is a

quotient of the path algebra kQopp of the opposite quiver Qopp of Q and R⊥ = {s ∈
kQopp

2 | s∗(r) = 0 for all r ∈ R}. Here (pq)∗ : kQ2 → k for a path pq of length two

in Qopp is the function that takes the value 1 on qp ∈ Q and 0 otherwise. That is,

the quiver of A! is Qopp and the relations are the relations orthogonal to R. (This

can be derived from the definitions. See also [Green and Mart́ınez-Villa, 1998]).

1.9.2 The Face Semigroup Algebra is a Koszul Algebra

This section establishes that the face semigroup algebra of a hyperplane arrange-

ment admits a grading making it a Koszul algebra. This is done by constructing a

linear resolution for the degree 0 component with respect to the grading inherited

from the path length grading on the path algebra of the quiver.
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Proposition 1.25. kF admits a grading making it a Koszul algebra.

Proof. The k-vector spaces

(kF)i =
⊕

codimY (X)=i

eXkFeY .

define a grading on kF . (This is the grading inherited from the path length grading

on the path algebra kQ of the quiver Q of kF .) So kF is a graded k-algebra. The

degree 0 component is

(kF)0 =
⊕

codimY (X)=0

eXkFeY =
⊕
X∈L

eXkFeX ∼= k|L|,

hence is semisimple. It remains to show that k|L| has a linear resolution. It suffices to

show that each simple kF -module kX has a linear resolution since k|L| ∼= ⊕
X∈L kX .

Fix X ∈ L and consider the projective resolution of the simple kF -module kX

given by Proposition 1.15,

· · · −→

 ⊕

codimX(Y )=p

kFeY


 ∂−→ · · · ∂−→ kFeX −→ kX −→ 0.

For each kFeY define k-subspaces

(kFeY )i =
⊕

codim(W )=i

eWkFeY .

By Lemma 1.4, if i < codim(Y ), then the degree i component of kFeY is 0. For

i = codim(Y ), (kF)i = eY kFeY = spank eY (Lemma 1.4 again). Since eY gener-

ates kFeY as a kF -module, kFeY is generated in degree codim(Y ). The bound-

ary operator ∂ is a degree 0 morphism: if eWw ∈ eWkFeY , then deg(eWw) =

codim(W ) and the degree of its image ∂(eWw) = eW∂(w) ∈ eW∂(kFeY ) ⊂
⊕

codimX(Y ′)=p eWkFeY ′ is codim(W ).
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Remark 1.26. Notice that in creating the surjection ϕ : kQ → kF many choices

were taken (in constructing the complete system of primitive orthogonal idempo-

tents and in putting orientations on the subspaces in L). These choices affect the

grading inherited by kF from kQ, but the corresponding graded algebras are iso-

morphic: two gradings on a k-algebra that both give rise to a Koszul algebra give

isomorphic graded k-algebras. See Corollary 2.5.2 of [Beilinson et al., 1996].

1.9.3 The Ext-algebra of the Face Semigroup Algebra

In this section we show that the Ext-algebra of kF is the incidence algebra of the

opposite lattice L∗ of the intersection lattice L.

The incidence algebra I(P ) of a finite poset P is the set of functions on the

subset of P × P of comparable elements {(y, x) ∈ P × P | y ≤ x} with multipli-

cation (fg)(x, y) =
∑

x≤z≤y f(x, z)g(z, y). The identity element is the Krönecker

δ-function. The incidence algebra I(P ) is a split basic algebra and the quiver Q of

I(P ) has P as its set of vertices and exactly one arrow x→ y if ylx. If I denotes

the ideal of kQ generated by differences of parallel paths, then I(P ) ∼= kQ/I. This

isomorphism is given by mapping a vertex x of Q to the function y 7→ δ(x, y), and

an arrow x→ y of Q to the function (u, v) 7→ δ(x, u)δ(y, v).

Proposition 1.27. The Ext-algebra of kF is the incidence algebra I(L∗) of the

opposite lattice of the intersection lattice L. Equivalently, it is the opposite algebra

I(L)opp of the incidence algebra I(L) of L.

Proof. Since kF is a Koszul algebra (Proposition 1.25), its Ext-algebra is its Koszul

dual algebra (Theorem 1.24), so we compute the Koszul dual of kF .

Let Q denote the quiver of kF . From Proposition 1.20, kF ∼= kQ/〈R〉 is the

quotient of the path algebra kQ by the ideal generated by the sums of all parallel
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paths of length two,

R =





∑

Z∈(Y,X)

(X → Z → Y ) : X,Y ∈ L


 .

Then (kF)! ∼= kQopp/〈R⊥〉 where R⊥ is spanned by differences of parallel paths of

length two in Qopp,

R⊥ = {(X → Z → Y )− (X → Z ′ → Y ) : X l Z,Z ′ l Y ∈ L} .

(See the discussion at the end of Section 1.9.1.)

Let I(L∗) denote the incidence algebra of L∗. Then I(L∗) ∼= kQopp/I, where

I is the ideal generated by differences of parallel paths (not necessarily of length

two). Therefore, the proof is complete once it is shown that R⊥ generates I.

If p : X → X1 → · · · → Xn → Y and q : X → Y1 → · · · → Yn → Y are parallel

paths in Q such that there exists an i with Xj = Yj for all j 6= i, then p − q ∈ I.

If there exists a sequence of paths p = p0, p1, . . . , pj = q with pi−1 and pi differing

in exactly one place for 1 ≤ i ≤ j, then p− q = (p0 − p1) + · · · + (pj−1 − pj) ∈ I.

Therefore, I = 〈R⊥〉 if any path in Qopp can be obtained from any other path that

is parallel to it by swapping one vertex at a time (without breaking the path). This

follows from the semimodularity of L∗ and by induction on the length of paths in

Qopp. Recall that a finite lattice L is (upper) semimodular if for every x and y in

L, if x and y cover x ∧ y, then x ∨ y covers x and y.

Let X → X1 → · · · → Xn → Y and X → Y1 → · · · → Yn → Y be parallel

paths in Qopp. Since Xn and Yn cover Xn ∧ Yn = Y , semimodularity of L∗ gives

that Xn ∨ Yn covers both Xn and Yn. Since X ≤ Xn and X ≤ Yn, it follows that

X ≤ (Xn ∨ Yn). So there exists a path from X to Xn ∨ Yn. We are now in the
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following situation.

X1
// · · · // Xn−1

// Xn

$$IIIIII

X

::uuuuuu

$$III
III

I
// · // · // (Xn ∨ Yn)

66nnnnnnnn

((PPPPPPPP Y

Y1
// · · · // Yn−1

// Yn

::uuuuuuu

Induction on the length of paths gives that

(Y → · · · → Yn−1 → Yn → Y )− (X → · · · → (Xn ∨ Yn) → Yn → Y ),

(X → · · · → Xn−1 → Xn → Y )− (X → · · · → (Xn ∨ Yn) → Xn → Y )

are in 〈R⊥〉. Clearly,

(X → · · · →(Xn ∨ Yn) → Xn → Y )

− (X → · · · → (Xn ∨ Yn) → Yn → Y ) ∈ 〈R⊥〉.

Therefore,

(Y → · · · → Yn−1 → Yn → Y )− (X → · · · → Xn−1 → Xn → Y )

is in 〈R⊥〉. Therefore, I = 〈R⊥〉 and (kF)! ∼= kQopp/〈R⊥〉 = kQopp/I ∼= I(L∗).

Corollary 1.28. The Ext-algebra of I(L∗) is isomorphic to the face semigroup

algebra kF .

1.9.4 The Hochschild (Co)Homology of the Face Semigroup

Algebra

Let A be a k-algebra and M an A-bimodule. There is a complex of A-bimodules

· · · di+1−−−→ M ⊗k A
⊗i di−−−→ · · · d1−−−→ M ⊗k A

d0−−−→ M
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with maps di : M ⊗k A
⊗i → M ⊗ A⊗i−1 defined by d0(m ⊗ a) = am − ma for

m ∈M , a ∈ A and for i ≥ 1

di(m⊗ a1 ⊗ · · · ⊗ ai) = (ma1 ⊗ a2 ⊗ · · · ⊗ ai)

+
i−1∑
j=1

(−1)j(m⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ai)

+ (−1)i(aim⊗ a1 ⊗ · · · ⊗ ai−1),

where m ∈M and a1, . . . , ai ∈ A. The Hochschild homology of A with coefficients

in M is HHi(A,M) = ker(di)/ im(di+1) for i ≥ 0. Let HHi(A) = HHi(A,A).

Similarly, there exists a cocomplex of A-bimodules

M
d0−−−→ Homk(A,M)

d1−−−→ Homk(A⊗k A,M)
d2−−−→ · · ·

where d0 : M → Homk(A,M) is the map d0(m)(a) = am−ma and di is the map

di : Homk(A
⊗i,M) → Homk(A

⊗i+1,M) given by

(dif)(a1 ⊗ · · · ⊗ ai+1) =a1f(a2 ⊗ · · · ⊗ ai+1)

+
i∑

j=1

(−1)jf(a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ai+1)

+ (−1)i+1f(a1 ⊗ · · · ⊗ ai)ai+1,

where f ∈ Homk(A
⊗i,M) and a1, . . . , ai+1 ∈ A. The Hochschild cohomology of

A with coefficients in M is HHi(A,M) = ker(di)/ im(di−1) for i ≥ 0. Denote the

Hochschild cohomology of A with coefficients in A by HHi(A) = HHi(A,A).

Proposition 1.29. The Hochschild homology HHi(kF) and the Hochschild coho-

mology HHi(kF) of kF vanish in positive degrees. In degree zero the Hochschild

homology is HH0(kF) ∼= k#L and the Hochschild cohomology is HH0(kF) ∼= k.
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Proof. Let Q denote the quiver of kF . The Hochschild homology of algebras whose

quivers have no oriented cycles is known to be zero in positive degrees and kq

in degree 0, where q is the number of vertices in the quiver [Cibils, 1986]. This

establishes the Hochschild homology of kF since Q has no oriented cycles.

Buchweitz (§3.5 of [Keller, 2003]) proved that the Hochschild cohomology al-

gebra of a Koszul algebra is the Hochschild cohomology algebra of its Koszul dual.

Since kF is a Koszul algebra with Koszul dual the incidence algebra I(L∗) of the

lattice L∗, there is an isomorphism

HH∗(kF) ∼= HH∗(I(L∗)) ∼=
⊕
i≥0

HHi(I(L∗)).

Gerstenhaber and Schack ([Gerstenhaber and Schack, 1983]; also see [Cibils, 1989,

Corollary 1.4]) proved that the Hochschild cohomology HHi(I(L∗)) of I(L∗) is the

simplicial cohomology of the simplicial complex ∆(L∗) whose i-simplices are the

chains of length i in the poset L∗. Therefore,

HHi(I(L∗)) ∼= H i(∆(L∗), k).

The latter is zero in positive degrees since ∆(L∗) is a double cone (L∗ contains

both a top and bottom element) and is k in degree zero since ∆(L∗) is connected.

It is easy to check directly that HH0(kF) ∼= k, completing the proof.

1.10 Connections with Poset Cohomology

1.10.1 The Cohomology of a Poset

Let P denote a finite poset. The order complex ∆(P ) of P is the simplicial complex

with i-simplices the chains of length i in P . Suppose P has both a minimal element

0̂ and a maximal element 1̂ and let k denote a field. The order cohomology of P
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with coefficients in k is the reduced simplicial cohomology with coefficients in k of

the order complex ∆(P −{0̂, 1̂}) of P −{0̂, 1̂}. The order cohomology of P has the

following characterization in terms of the chains of P .

Suppose P contains at least two distinct elements. For i ≥ 0, let Ci(P ) denote

the k-vector space spanned by the i-chains of P − {0̂, 1̂},

Ci(P ) = spank

{
(x0 < · · · < xi)

∣∣∣ xj ∈ P − {0̂, 1̂}
}
.

For i = −1, let C−1(P ) = k, the vector space spanned by the empty chain. If P

consists of one element, then define C−2(P ) = k and Ci(P ) = 0 otherwise.

Define coboundary morphisms δi : Ci(P ) → Ci+1(P ) by

δi(x0 < · · · < xi)

=
i+1∑
j=0

(−1)j
∑

xj−1<x<xj

(x0 < · · · < xj−1 < x < xj < · · · < xi),

where x−1 = 0̂ and xi+1 = 1̂. It is straightforward to check that δ2 = 0. The order

cohomology of P is H i(P ) = H i(P ; k) = ker(δi)/ im(δi−1).

Notice that if P consists of exactly one element, then H−2(P ) = k and H i(P ) =

0 for i 6= −2. If P = {0̂, 1̂}, then H−1(P ) = k and H i(P ) = 0 for i 6= −1.

1.10.2 A Vector Space Decomposition of the Face Semi-

group Algebra

Suppose the length of the longest chain in the poset P is d + 2. Then ker(δd) is

spanned by the chains of length d in P − {0̂, 1̂} and im(δd−1) is spanned by the

elements,

∑
xj−1<x<xj

(x0 l · · ·l xj−1 l xl xj l · · ·l xd−1), (1.10.1)
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one for each chain x0 l · · ·l xj−1 < xj l · · ·l xd−1 of length d− 1.

Put P = L in the above and identify the cover relations with the arrows

in Q. Then the top cohomology of L corresponds to the quotient of the span

of the maximal paths in Q by the quiver relations. This gives a vector space

isomorphism e0̂kFe1̂ ∼= Hd−2(L), where the length of the longest chain in L is

d. Folkman [Folkman, 1966] showed that the cohomology of a geometric lattice is

non-vanishing only in the top degree. Since L∗ is a geometric lattice and ∆(L∗) =

∆(L), the cohomology of L is non-vanishing only in the top degree. Therefore,

e0̂kFe1̂ ∼= H∗(L). Since every interval of a geometric lattice is also a geometric

lattice, the result holds for every interval of L. That is, eXkFeY ∼= H∗([X, Y ]).

Proposition 1.30. kF has a k-vector space decomposition in terms of the order

cohomology of the intervals of L,

kF ∼=
⊕
X,Y ∈L

H∗([X,Y ]).

1.10.3 Another Cohomology Construction on Posets

In light of the above decomposition, the direct sum
⊕

X,Y ∈LH
∗([X, Y ]) inherits

a k-algebra structure from kF . This section shows that the algebraic structure

can be obtained via the cup product of a cohomology algebra on the intersection

lattice. This cohomology construction appears to be new.

Let P be a finite poset and let k denote a field. Let Di(P ) denote the k-vector

space of i-chains in P ,

Di(P ) =
{

(x0 < · · · < xi)
∣∣∣ xj ∈ P

}
.

Define coboundary morphisms di : Di(P ) → Di+1(P ) by

di(x0 < · · · < xi)
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=
i∑

j=1

(−1)j
∑

xj−1<x<xj

(x0 < · · · < xj−1 < x < xj < · · · < xi).

Then d2 = 0. The cohomology groups of the cocomplex (D•, d) will be denoted by

Hi(P ) = Hi(P ; k) = ker(di)/ im(di−1).

The differences betweenHi(P ) and H i(P ) are small, but important. The former

is defined for any poset P , not just a poset with 0̂ and 1̂. The vector space Di(P )

is spanned by all the chains in P , not just those avoiding 0̂ and 1̂. The summation

in the coboundary morphism di : Di(P ) → Di+1(P ) runs from j = 1 to j = i,

whereas the summation runs from j = 0 to j = i+ 1 in the coboundary morphism

δi : Ci(P ) → Ci+1(P ). However, there is a strong relationship between H(P ) and

H(P ).

Proposition 1.31. Let P be a finite poset. Then for all i ≥ 0,

Hi(P ) ∼=
⊕
x,y∈P

H i−2([x, y]).

Proof. Di(P ) decomposes into subspaces spanned by the i-chains of P beginning

at x and terminating at y: (x < x1 < · · · < xi−1 < y). The differential di respects

this decomposition and the subspaces are isomorphic to Ci−2([x, y]) (drop the x

and y of each chain). This isomorphism commutes with the coboundary operators,

establishing the proposition.

The benefit of working with H∗(P ) is that the simplicial cup product (see

[Munkres, 1984, §49]) on the simplices of the order complex ∆(P ) of P descends

to a product on the cohomology.

Define a product ^: Dp(P )×Dq(P ) → Dp+q(P ) by

(x0 < · · · < xp) ^ (y0 < · · · < yq)
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=





(x0 < · · · < xp = y0 < · · · < yq), xp = y0,

0, xp 6= y0.

(1.10.2)

Lemma 1.32. For c ∈ Dp(P ) and d ∈ Dq(P ),

δp+q(c^d) = δp(c)^d + (−1)pc^δq(d).

Proof. Let c = (x0 < · · · < xp) and d = (xp < · · · < xp+q). Then

δp(c)^d + (−1)pc^δq(d)

=

p∑
j=1

(−1)j
∑

xj−1<x<xj

(x0 < · · · < xj−1 < x < xj < · · · < xp)^d

+ (−1)pc^

p+q∑
j=p+1

(−1)j−p
∑

xj−1<x<xj

(xp < · · · < xj−1 < x < xj < · · · < xp+q)

=

p∑
j=1

(−1)j
∑

xj−1<x<xj

(x0 < · · · < xj−1 < x < xj < · · · < xp+q)

+

p+q∑
j=p+1

(−1)j
∑

xj−1<x<xj

(x0 < · · · < xj−1 < x < xj < · · · < xp+q)

=

p+q∑
j=1

(−1)j
∑

xj−1<x<xj

(x0 < · · · < xj−1 < x < xj < · · · < xp+q)

= δp+q(x0 < · · · < xp+q)

= δp+q(c^d).

Corollary 1.33. The product Dp(P )×Dq(P )
^−→ Dp+q(P ) induces a well-defined

product Hp(P )×Hq(P )
^−→ Hp+q(P ) giving H∗(P ) =

⊕
iHi(P ) a k-algebra struc-

ture.
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1.10.4 The Face Semigroup Algebra as a Cohomology Al-

gebra

Combining Propositions 1.30 and 1.31 gives the vector space isomorphism

φ : H∗(L)
∼=→

⊕
X,Y ∈L

H∗([X, Y ])
∼=→ kQ/I ϕ→ kF .

Recall that Proposition 1.30 identifies
⊕

X,Y H
∗([X, Y ]) with kF via the quiver Q

with relations of kF . The isomorphism identifies an unrefinable chain in L with

the corresponding path in Q
(
X0 lX1 l · · ·lXj−1 lXj

) 7−→ (
Xj → Xj−1 → · · · → X1 → X0

)

and maps the relations in H∗(L) to the quiver relations. Under this isomorphism

the multiplication in H∗(L) maps to the multiplication in kQ/I (composition of

chains in L maps to composition of paths in Q). Therefore, φ is a k-algebra iso-

morphism.

Proposition 1.34. Let kF be the face semigroup algebra of a hyperplane arrange-

ment with intersection lattice L. Then kF ∼= H∗(L).

1.10.5 Connection with the Whitney Cohomology of the

Intersection Lattice

We finish this section by identifying the Whitney cohomology of L in kF . (See

[BacÃlawski, 1975] and more recently [Wachs, 1999].) The Whitney cohomology of a

poset P with 0̂ is the direct sum WH∗(P ) =
⊕

X∈P H
∗([0̂, X]). Since the Whitney

homology of L∗ is isomorphic to the Orlik-Solomon algebra of L∗ ([Björner, 1992,

§7.10]), the following result also explains how the dual of the Orlik-Solomon algebra

embeds in the face semigroup algebra.
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Corollary 1.35. The Whitney cohomology of L∗ is isomorphic to the ideal of

chambers in kF . It is a projective indecomposable kF-module.

Proof. Since H∗([X, Y ]) ∼= eXkFeY for all X,Y ∈ L (see the discussion preceeding

Proposition 1.30), the Whitney cohomology of L∗ is

WH∗(L∗) ∼=
⊕
X∈L

H∗([X, 1̂]) ∼=
⊕
X∈L

eXkFe1̂ ∼= kFe1̂ ∼= kF1̂.

1.11 Future Directions

These results extend to the semigroup algebra of the semigroup of covectors of

an oriented matroid [Björner et al., 1993, §4.1]. This is essential due to two ob-

servations. The first observation is that the exact sequence used to construct the

projective resolutions of the simple modules (Section 1.7) can be extended to the

semigroup algebra of an oriented matroid [Brown and Diaconis, 1998, §6]. The sec-

ond observation is that the construction of the complete set of primitive orthogonal

idempotents in Section 1.5.1 holds for a larger class of semigroups (see Chapter 3).

The cohomology construction introduced in Section 1.10.3 appears to be new

and deserves some attention. The questions asked of the order cohomology of a

poset P should be asked of H∗(P ). For example, if G is a group acting on a poset

P , then this G-action on P induces a G-module structure on H∗(P ), and it would

be interesting to study the resulting G-module structure. For order homology and

cohomology this has already been extensively studied and is quite interesting. See

[Wachs, 1999], for example.

For certain classes of posets H∗(P ) has nice algebraic structure. For example, if

P is a Cohen-Macaulay poset, then its incidence algebra I(P ) is a Koszul algebra

[Polo, 1995, Proposition 1.6]. Hence, H∗(P ) is the Koszul dual algebra of I(P ).
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This describes the Koszul dual algebra of I(P ) in terms of the order cohomology

of P .

The construction also provides an extension of a result [Hozo, 1996] describing

a part of the Lie algebra (co)homology of a certain subalgebra N(P ) of the inci-

dence algebra of P in terms of the order (co)homology of P . Hozo showed that

if P contains 0̂ and 1̂, then the Lie algebra (co)homology of N(P ) contains the

order (co)homology of P . His proof extends to show that for any poset P (not

necessarily containing 0̂ and 1̂), the Lie algebra (co)homology of N(P ) contains

the (co)homology H∗(P ). This is a further step towards describing the complete

Lie algebra (co)homology of N(P ) in terms of the combinatorics of the poset P .
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1.12 Appendix: Ext2 and Relations.

This Appendix provides a proof of the following Proposition. Although a reference

to a proof of the result is included in the body of this work (see [Bongartz, 1983]),

it is included here for the convenience of the reader.

Proposition 1.36. Let Q be a quiver with no oriented cycles and let I be an

admissible ideal. Suppose that R is a minimal set of relations generating I as

a two-sided ideal of kQ. Then the number of relations from x to y in R is the

dimension of the k-vector space Ext2
kQ/I(Sx, Sy).

Proof. Let R(x, y) denote the set of relations in R beginning at x and ending at

y. We begin by showing that the number of relations in R(x, y) is the dimension

of y
(
I/(PI + IP )

)
x.

First note that distinct elements of R(x, y) give distinct elements of y
(
I/(PI+

IP )
)
x. Suppose ρ 6= τ ∈ R(x, y). If ρ− τ ∈ y(PI + IP )x, then ρ = τ +

∑
i aipiγi +

∑
i biδiqi, where ai, bi ∈ k are scalars, pi ∈ yQ are nonzero paths ending at y,

qi ∈ Qx are nonzero paths beginning at x, γi ∈ Ix are relations beginning at

x and δi ∈ yI are relations ending at y. Note that the lengths of the paths in

the linear combinations γi and δi are strictly less than the lengths of the paths

in ρ. Therefore, since R generates I, it follows that we can write γi and δi in

terms of elements of R − ρ. Therefore, ρ ∈ 〈R − {ρ}〉, contradicting that R is

a minimal generating set of I. A similar argument shows that the images of the

elements in R(x, y) in yIx/y(PI + IP )x are independent. This establishes the

inequality |R(x, y)| ≤ dim y
(
I/(PI + IP )

)
x. Since R generates I, it follows that

R(x, y) = R∩ yIx gives a spanning set for yIx/y(PI + IP )x. This establishes the

reverse inequality.
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We now show that the dimension of Ext2
A(Sx, Sy) is the dimension of y

(
I/(PI+

IP )
)
x, completing the proof. Consider the following sequence of kQ/I-modules.

0 −→ (
I/IP

)
x

h−→ (
P/IP

)
x

g−→ (
kQ/I

)
x

f−→ Sx −→ 0,

where f(q + I) = q + P , g(p + IP ) = p + I and h(i + IP ) = i + IP , for q ∈ kQ,

p ∈ P and i ∈ I. This sequence is exact, and big(P/IP
)
x is a projective kQ/I-

module: The map
⊕

{y:x→y∈Q1} kQy → Px given by right multiplication by the

arrows x→ y is an isomorphism of kQ-modules, so Px is a projective kQ-module

and it follows that
(
P/IP

)
x is a projective kQ/I-module.

Since
(
P/IP

)
x and

(
kQ/I

)
x are projective kQ/I-modules, the above exact

sequence allows us to compute Ext2
kQ/I(Sx, Sy). Proposition 7.2 of Cartan and

Eilenberg’s Homological Algebra gives

Ext2
kQ/I(Sx, Sy)

∼= HomkQ/I

((
I/IP

)
x, Sy

)

h∗
(
HomkQ/I

((
P/IP

)
x, Sy

)) .

It is straightforward to show the image of h∗ is zero. (Any element in I is a linear

combination of paths of length at least two. Use the module structure to commute

the action of an arrow from these paths onto Sy and note that P ·Sy = 0.) Therefore,

Ext2
kQ/I(Sx,Sy)

∼= HomkQ/I((I/IP )x, Sy)

∼= HomkQ/P ((I/(PI + IP ))x, Sy) ∼= Homk(y(I/(PI + IP ))x, k).

Hence, dim Ext2
kQ/I(Sx, Sy) = dim(y

(
I/(PI + IP )

)
x).
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1.13 Appendix: Chamber-Valued Derivations of the Face

Semigroup Algebra

In this section we show that every derivation δ : kF → kC taking values in the sub-

space of kF spanned by the chambers C of the arrangement is inner. Equivalently,

we show the first Hochscild cohomology of kF over kC is trivial. This question

arose in early attempts to compute the Hochschild cohomology of kF over kF .

We begin by recalling some definitions. The first Hochschild cohomology group

of kF over kC is HH1(kF , kC) = Der(kF , kC)/Der0(kF , kC), where

Der(kF , kC) = {δ ∈ Homk(kF , kC) | δ(ab) = δ(a)b+ δ(b)a for all a, b ∈ kF} ,

Der0(kF , kC) = {δ ∈ Homk(kF , kC) | δ(a) = am−ma for some m ∈ kC} .

Proposition 1.37. HH1(kF , kC) = 0.

Proof. Let δ : kF → kC be a derivation. We show δ is an inner derivation by

proceeding as follows.

(a) We can suppose δ(eX) = 0 for each X ∈ L. Put m =
∑

Y ∈L δ(eY )eY , and

∂m(a) = ma− am for all a ∈ kF . Observe that for all X, Y ∈ L,

δ(eXeY ) = eXδ(eY ) + δ(eX)eY .

Thus, for all X ∈ L,

∂m(eX) =
∑
Y ∈L

δ(eY )eY eX −
∑
Y ∈L

eXδ(eY )eY

= δ(eX)eX −
∑
Y ∈L

(δ(eXeY )− δ(eX)eY ) eY

= δ(eX)eX − δ(eX)eX + δ(eX)
∑
Y ∈L

eY

= δ(eX).
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Therefore, δ′ = δ − ∂m is a derivation with the property that δ′(eX) = 0 for all

X ∈ L.

(b) We can suppose δ(c) = 0 for some chamber c. Let c be a chamber and

construct a complete system of primitive orthogonal idempotents starting from c.

That is, suppose e1̂ = c. Then by (a), δ(c) = 0.

(c) For any pair of adjacent chambers d, d′, there exists λ ∈ k such that δ(d−
d′) = λ(d− d′). Let d and d′ be adjacent chambers with common codimension one

face y. Then δ(d− d′) = δ(yd− yd′) = δ(y)(d− d′) + yδ(d− d′) = yδ(d− d′) since

δ(y) ∈ kC. Thus, δ(d− d′) is a linear combination of chambers adjacent to y. Since

y is of codimension 1, there are exactly two chambers adjacent to y. These are d

and d′. Thus, δ(d − d′) = λd + γd′ for some λ, γ ∈ k. Then for any chamber c we

have (λ+ γ)c = cδ(d− d′) = δ(cd− cd′)− δ(c)(d− d′) = δ(0)− δ(c)(0) = 0, since

δ(c) ∈ kC. So λ = −γ. Therefore, for any pair of adjacent chambers d, d′, there

exists λ ∈ k such that δ(d− d′) = λ(d− d′).

(d) Suppose A is a rank two central arrangement. There exists a λ ∈ k such that

δ(d−d′) = λ(d−d′) for any pair of adjacent chambers d, d′. Ordering the chambers

in clockwise order gives a sequence of pairwise adjacent chambers, d0, d1, . . . , dl.

By (c), for each t, there exists λt ∈ k such that δ(dt−1 − dt) = λt(dt−1 − dt). Note

that d0 and dl are also adjacent, so δ(d0− dl) = λ0(d0− dl) for some λ0 ∈ k. Thus,

λ0(d0 − dl) = δ(d0 − dl) = δ(d0 − d1) + · · ·+ δ(dl−1 − dl)

= λ1(d0 − d1) + λ2(d1 − d2) + · · ·+ λl(dl−1 − dl)

= λ1d0 + (λ2 − λ1)d1 + · · ·+ (λl − λl−1)dl−1 − λldl.

Since chambers are linearly independent, λ0 = λ1 = λ2 = · · · = λl.

(e) For every Y ∈ L there exists λ ∈ k such that δ(d − d′) = λ(d − d′) for
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chambers d and d′ with common codimension one face of support Y . If supp(y′) =

supp(y) = Y , then y′d and y′d′ are two distinct adjacent chambers. So (c) gives

the existence of λ′ ∈ k such that δ(y′d − y′d′) = λ′(y′d − y′d′). Similarly, there

exists λ ∈ k such that δ(d−d′) = λ(d−d′). Since δ is a derivation, λ′(y′d− y′d′) =

δ(y′d− y′d′) = δ(y′)(d− d′) + y′δ(d− d′) = y′δ(d− d′) = λ(y′d− y′d′). Therefore,

λ = λ′.

(f) There exists λ ∈ k such that for any pair of adjacent chambers d, d′, δ(d−
d′) = λ(d − d′). Let d, d′ and e, e′ denote two pairs of adjacent chambers with

common codimension one faces y and w, respectively. By (c) there exists λ ∈ k

such that δ(d − d′) = λ(d − d′) and λ′ ∈ k such that δ(e − e′) = λ′(e − e′). Since

supp(w) and supp(y) are hyperplanes and A is a central arrangement, supp(w)

and supp(y) intersect in a codimension two subspace Z. Let z be an element with

supp(z) = Z. Then the chambers zd, zd′ are adjacent and distinct with common

codimension one face zy of support supp(zy) = supp(z) ∧ supp(y) = supp(y).

Thus, δ(zd − zd′) = λ(zd − zd′) by (e). Similarly, δ(ze − ze′) = λ′(ze − ze′). The

restricted arrangement A≥Z is a rank two central arrangement, so by (d), λ = λ′.

(g) For any chamber d, δ(d) = λ(d − c) for some λ ∈ k. Pick a gallery

d, d1, . . . , dl, c. Then by (f),

δ(d) = δ(d− d1) + δ(d1 − d2) + · · · δ(dl − c)

= λ(d− d1) + λ(d1 − d2) + · · ·λ(dl − c)

= λ(d− c).

(h) δ is an inner derivation. It is the inner derivation ∂λc: for any x ∈ F ,

δ(x) = δ(x)c = δ(xc)− xδ(c) = δ(xc) = λ(xc− c) = x(λc)− (λc)x = ∂λc(x),
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where we used the facts that δ(x) ∈ kC, δ(c) = 0, xc ∈ C and (g). Therefore, δ is

an inner derivation.

Corollary 1.38. Let M = rad(kC) ∼= (1− e1̂)kC. Then HH1(kF ,M) = k.

Proof. Let δ ∈ Der(kF ,M). Since M ⊂ kC, δ ∈ Der(kF , kC). Therefore, δ ∈
Der0(kF , kC) since HH1(kF , kC) = 0. It follows from the above proof that δ = ∂s

where s =
∑

X∈L δ(eX)eX+λe1̂ = δ(e1̂)+λe1̂. Hence, δ = ∂δ(e1̂)+λ∂e1̂ . Since δ(e1̂) ∈
M , ∂δ(e1̂) ∈ Der(kF ,M). Thus, [δ] = [∂e1̂ ]. It remains to show ∂e1̂ /∈ Der0(kF ,M).

Suppose ∂e1̂ = ∂m for some nonzero m ∈ M . Then, ∂e1̂(a) = ∂m(a) for every

a ∈ kF . Hence, e1̂a − ae1̂ = ma − am for every a ∈ kF . Take a = e1̂. Then

0 = e1̂e1̂ − e1̂e1̂ = me1̂ − e1̂m = me1̂ = m. Here we used that m ∈M = (1− e1̂)kC
and that m ∈ kC, respectively.



CHAPTER 2

THE FACE SEMIGROUP ALGEBRA OF A REFLECTION

ARRANGEMENT

2.1 Introduction

This chapter investigates the face semigroup algebra of hyperplane arrangements

that arise from finite reflection groups. There is a hyperplane arrangement as-

sociated to every finite reflection group consisting of the hyperplanes that are

fixed by some reflection in the reflection group. This leads to an action of the

finite reflection group on the face semigroup algebra of the arrangement. Patrick

Bidigare [Bidigare, 1997] showed that the subalgebra of elements invariant under

this group action is anti-isomorphic to the descent algebra of the finite reflection

group. The latter is a subalgebra of the group algebra of the finite reflection group

[Solomon, 1976]. Bidigare’s result introduces a new setting in which the descent

algebra can be studied. Manfred Schocker [Schocker, 2004, Schocker, 2005] has ini-

tiated this study by studying the descent algebra of the symmetric group from this

point of view.

The material presented here is the first installment of an ongoing project

to study the module structure of the descent algebra of an arbitrary finite re-

flection group. In the following the quiver of the descent algebra of the sym-

metric group is computed. Altough this was already known — it is implicit in

[Garsia and Reutenauer, 1989] and stated explictly in [Schocker, 2004] — the ap-

proach presented here is sufficiently abstract that it may generalize to all finite

reflection groups. (The quiver of the descent algebra of any other finite reflection

group is not known.) There is only one piece missing. If Lemma 2.15 holds for

47
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any finite reflection group, then the proofs presented here carry over verbatim to

the general setting. Otherwise, an understanding of why the Lemma fails to hold

should provide enough information to determine the quiver.

The first few sections present some definitions and recall some of the theory.

Section 2.2 recalls the definition of a finite reflection group W and the reflection

arrangement associated to W . Section 2.3 presents the definition of the descent

algebra D(W ) of an arbitrary finite reflection group W . In Section 2.4 we recall

the anti-isomorphism between D(W ) and the invariant subalgebra (kF)W of the

face semigroup algebra kF of the reflection arrangement.

The next few sections study some of the module structure of the invariant sub-

algebra (kF)W . Section 2.5 describes the simple (kF)W -modules. In Section 2.6

a complete system of primitive orthogonal idempotents in (kF)W is constructed

using a complete system of primitive orthogonal idempotents in kF and the ac-

tion of W on kF . This construction requires that the characteristic of the field k

does not divide the order of the reflection group W . The idempotents are used to

describe the indecomposable projective (kF)W -modules in Section 2.7.

The remaining sections deal with trying to compute the quiver of (kF)W . In

Section 2.8 an action of W on the path algebra kQ of the quiver Q of kF is

defined, and a W -equivariant surjection kQ → kF is constructed. In Section 2.9 a

quiver QW is constructed from Q using the action of W and a morphism ξ from

k(QW ) onto (kF)W is defined. This implies that QW is the quiver of a subalgebra

of (kF)W . When W = Sn, we show that ξ is surjective, hence QSn is the quiver of

(kF)Sn . Sections 2.11 and 2.12 study the case W = Sn in more detail. The former

presents a combinatorial description of the quiver QSn and the latter presents

detailed examples for Sn when n ≤ 6.
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There is a final section 2.13 outlining possible future directions for this project.

2.2 Coxeter Groups and Reflection Arrangements

This section will recall definitions and basic facts from the theory of finite reflection

groups. See [Brown, 1989], [Humphreys, 1990] and [Björner and Brenti, 2005] for

more information.

A finite Coxeter group W (or a finite reflection group) is a finite group generated

by a set of reflections in a real vector space V . The reflection arrangement A(W )

of W is the hyperplane arrangement consisting of the hyperplanes fixed by some

reflection in W . The Coxeter group W permutes the hyperplanes in A(W ), so W

acts on the intersection lattice L(W ) of A(W ) and on the faces F(W ) of A(W ).

The action of W on F(W ) extends linearly to an action of W on the semigroup

algebra kF(W ). When the Coxeter group W is clear from the context we will write

F , L and A for F(W ), L(W ) and A(W ), respectively.

Proposition 2.1. Let W be a finite reflection group and let F denote the face

semigroup of the reflection arrangement A of W . Let L denote the intersection

lattice of A.

1. X ≤ Y iff w(X) ≤ w(Y ) for all X, Y ∈ L and all w ∈ W .

2. w(X ∨ Y ) = w(X) ∨ w(Y ) for all X,Y ∈ L and all w ∈ W .

3. x ≤ y iff w(x) ≤ w(y) for all x, y ∈ F and all w ∈ W .

4. w(xy) = w(x)w(y) for all x, y ∈ F and all w ∈ W .

5. w(supp(X)) = supp(wX) for all X ∈ L and all w ∈ W .
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(1) and (3) say that W acts on the posets L and F by poset automorphisms. (2)

and (4) say that W acts on the semigroups L and F by semigroup automorphisms.

(5) says that supp : F → L is W -equivariant. It follows that W acts on kF and kL
by algebra automorphisms and that supp : kF → kL is a W -equivariant algebra

morphism. The proof of the Proposition is straightforward.

For x ∈ F let [x] = {w(x) : w ∈ W} denote the W -orbit of x. Let Wx =

{w ∈ W : w(x) = x} denote the stabilizer of x, and let W x denote a set of coset

representatives of Wx. Similarly, for X ∈ L let [X] = {w(X) : w ∈W} denote the

W -orbit of X, let WX = {w ∈ W : w(X) = X} denote the subgroup of elements

of w that map the subspace X to itself (not necessarily pointwise), and let WX

denote a set of coset representatives for WX .

Let L/W = {[X] : X ∈ L} denote the set of W -orbits of elements in L. Then

L/W is a poset with partial order given by [X] ≤ [Y ] iff there exists w ∈ W with

w(X) ≤ Y . (Reflexivity and transitivity of ≤ are straightforward; to see that ≤ is

anti-symmetric note that w(X) ≤ X iff w(X) = X for all w ∈ W , X ∈ L.) We will

denote elements of L/W by [X] where X ∈ L is a representative for that orbit. If

[X] ≤ [Y ] in L/W , we can suppose, without loss of generality that X ≤ Y in L.

2.3 The Descent Algebra of a Finite Coxeter Group

Let W denote a finite Coxeter group and let c denote a chamber in the reflection

arrangement A of W . If x ≤ c is a codimension one face of c, then the hyperplane

supp(x) is called a wall of c. Let S ⊂ W denote the set of reflections in the walls

of c. Then S is a generating set of W [Brown, 1989, §I.5A] and the pair (W,S) is

called a Coxeter system.

Fix a Coxeter system (W,S). For J ⊂ S let WJ = 〈J〉 denote the subgroup of W
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generated by the elements in J . Each coset of WJ in W contains a unique element

of minimal length when expressed as a word in the generators S [Humphreys, 1990,

Proposition 1.10(c)]. Let W J denote the set of these minimal length coset repre-

sentatives. Let wJ =
∑

w∈WJ w denote the formal sum of the minimal length coset

representatives of WJ . Then wJ is an element of the group algebra kW of W with

coefficients in some field k. The k-vector space D(W ) spanned by the elements wJ

for J ⊂ S is a subalgebra of the group algebra kW called the descent algebra of

W . It was introduced by Solomon [Solomon, 1976].

2.4 The Descent Algebra as the Invariant Subalgebra

This section recalls the anti-isomorphism between the descent algebra of a finite

Coxeter group W and the W -invariant subalgebra of the face semigroup algebra

kF of the reflection arrangement of W .

Let W denote a finite Coxeter group, let c be a chamber in the reflection

arrangement A of W and let S denote the set of reflections in the walls of c

as in the previous section. Let C denote the set of chambers in the reflection

arrangement A. The k-vector space kC spanned by the chambers C is a two-sided

ideal of the face semigroup algebra kF of A. Therefore, it is a kF -module and

hence a (kF)W -module, where (kF)W denotes the subalgebra of kF consisting of

elements invariant under the action of W . The action of W on kC commutes with

the action of (kF)W on kC, so there is an algebra morphism (kF)W → EndkW (kC),

where EndkW (kC) denotes the k-algebra of kW -endomorphisms of kC. There is an

isomorphism kC ∼= kW of kW -modules given by identifying w(c) with w for all w ∈
W . This gives a k-algebra isomorphism EndkW (kC) ∼= EndkW (kW ). Since any kW -

endomorphism commuting with the action of W is given by right multiplication by
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an element of kW , there is an isomorphism EndkW (kW ) ∼= (kW )op, where (kW )op

is the k-algebra obtained from kW be reversing the multiplication in kW . The last

statement of the following result was first noticed in [Bidigare, 1997].

Theorem 2.2 ([Brown, 2000]). Let W be any finite Coxeter group. The follow-

ing composition is injective with image the descent algebra D(W ) of W .

(kF(W ))W ↪→ EndkW (kC) ∼= EndkW (kW ) ∼= EndkW (kW ) ∼= (kW )op.

Therefore, (kF(W ))W is anti-isomorphic to D(W ).

Before proceeding we explicitly record the above isomorphism. Recall that any

face x ∈ F of the reflection arrangement is in the W -orbit of a unique face y of c

[Humphreys, 1990, Theorem 1.12]; and that the stabilizer of y ≤ c is WJ , where J

is the set of reflections in the walls of c containing y [Humphreys, 1990, Theorem

1.15]. Therefore, the elements
∑

w∈WJ w(y) for y ≤ c form a basis of (kF)W . The

above anti-isomorphism is given by sending
∑

w∈WJ w(y) to
∑

w∈WJ w.

2.5 Simple Modules

We now describe the simple (kF)W -modules. Since the support map supp : kF →
kL is W -equivariant it restricts to an algebra morphism supp : (kF)W → (kL)W

from the W -invariant subalgebra (kF)W of kF to the W -invariant subalgebra

(kL)W of kL. The semigroup algebra kL is isomorphic to the ring kL of linear

functions from L to k [Solomon, 1967]. The isomorphism is given by φ : kL → kL

mapping X to the function that is 1 on Y ≥ X and that is 0 otherwise. The left

action of W on L induces a right action of W on kL given by (fw)(X) = f(w(X))

for f ∈ kL, w ∈ W and X ∈ L. Under these W -actions φ is W -equivariant
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and restricts to an isomorphism (kL)W ∼= (kL)W . Now (kL)W ∼= kL/W via the

isomorphism ρ(f)([X]) = f(X) with inverse ρ−1(g)(X) = g([X]), where X ∈ L,

[X] ∈ L/W is the W -orbit of X, f ∈ (kL)W and g ∈ kL/W . Therefore, there is a

surjective algebra morphism with a nilpotent kernel,

(kF)W
supp // (kL)W

φ // (kL)W
ρ // kL/W .

The components of this morphism give the irreducible characters of (kF)W .

Proposition 2.3. The irreducible representations of (kF)W are 1-dimensional.

There is one irreducible representation for each orbit [X] ∈ L/W , given by the

restriction of χX : kF → k to (kF)W .

Recall that χX is the irreducible character (§1.4.3) of kF defined on y ∈ F by

χX(y) =





1, if supp(y) ≤ X,

0, otherwise.

If y ∈ F and W y denotes a set of coset representatives for the stabilizer Wy of y,

then

χX

( ∑
w∈W y

w(y)

)
=

∑
w∈W y

χX (w(y)) = |{w ∈ W y : w(supp(y)) ≤ X}| .

If supp(x) is in the orbit of X, then we can suppose without loss of generality that

supp(x) = X. Then for any w ∈W , w(X) ≤ X iff w(X) = X. Therefore,

χX

( ∑
w∈Wx

w(x)

)
= |{w ∈ W x : w(X) = X}| = [WX : Wx],

where WX is the subgroup of W of elements w such that w(X) = X.

2.6 Primitive Idempotents

This section constructs a complete system of primitive orthogonal idempotents

in (kF)W . The construction requires that the characteristic of the field k does
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not divide the order of W . We use the construction from Section 1.5 to obtain a

complete system of primitive orthogonal idempotents {eX}X∈L in kF that behave

well under the action of W . Specifically, we will have w(eX) = ew(X) for all X ∈
L and w ∈ W . Then the elements

∑
Y ∈[X] eY , one for each orbit [X] ∈ L/W ,

give a complete system of primitive orthogonal idempotents in (kF)W . Indeed,

they are are invariant under the action of W ; they are idempotents since the

sum of orthogonal idempotents is an idempotent; they are orthogonal because

the summands are orthogonal; they sum to one since
∑

X eX = 1; and they are

primitive idempotents since they lift primitive idempotents in kL/W :

(ρ ◦ φ ◦ supp)

( ∑

w∈WX

ew(X)

)
([Y ]) =

( ∑

w∈WX

(ρ ◦ φ ◦ supp)(ew(X))

)
([Y ])

=

( ∑

w∈WX

ρ(δw(X))

)
([Y ])

=
∑

w∈WX

δw(X)(Y )

= δ[X]([Y ]),

where WX is a set of coset representatives of WX . In the above, δ is the Krönecker

δ-function.

For each X ∈ L let X̂ denote a linear combination of elements of support X

whose coefficients sum to 1. Suppose that w(X̂) = ŵ(X) for all w ∈ W and all

X ∈ L (see below for examples of such elements). Construct a complete system

of primitive orthogonal idempotents {eX}X∈L in kF using the formula eX = X̂ −
∑

Y >X X̂eY (see Remark 1.6). That w(eX) = ew(X) for all w ∈ W follows by

induction on X ∈ L. Indeed, if w ∈ W , and X = 1̂, then w(e1̂) = w(1̂) = 1̂ = e1̂ =
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ew(1̂). Now suppose that w(eY ) = ew(Y ) for all Y > X. Then

w(eX) = wX̂ −
∑
Y >X

w
(
X̂eY

)

= wX̂ −
∑
Y >X

w
(
X̂

)
w(eY )

= ŵX −
∑
Y >X

ŵXewY

= ŵX −
∑
Y >wX

ŵXeY

= ewX .

The above is summarized in the following statement.

Proposition 2.4. For each X ∈ L let X̂ denote a linear combination of elements

of support X whose coefficients sum to 1. Suppose that w(X̂) = ŵ(X) for all

w ∈ W and X ∈ L. Define eX for X ∈ L recursively by eX = X̂ −∑
Y >X X̂eY .

Then the elements
∑

Y ∈[X] eY , one for each orbit [X] ∈ L/W , form a complete

system of primitive orthogonal idempotents in (kF)W .

Example 2.5. For each X ∈ L, let X̃ denote the normalized sum of all elements

of support X.

X̃ =
1

#{x ∈ F : supp(x) = X}


 ∑

supp(x)=X

x


 .

Then w(X̃) = w̃(X) for all w ∈ W and so the idempotents

eX = X̃ −
∑
Y >X

X̃eY

satisfy w(eX) = ew(X) for all X ∈ L and the elements

∑

Y ∈[X]

eY for [X] ∈ L/W

form a complete system of primitive orthogonal idempotents in (kF)W .
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Example 2.6. Fix a chamber c in F . Define a relation on the faces of c by x ∼ y

iff supp(x) = w(supp(y)) for some w ∈ W . Then ∼ is an equivalence relation and

we let Ψ denote a set of representatives for the equivalence relation ∼. Since every

face x ∈ F is W -conjugate to a unique face of c [Humphreys, 1990, Theorem 1.12],

it follows that every X ∈ L is W -conjugate to the support of a unique element

in Ψ. That is, for every X ∈ L there is a w ∈ W and a unique y ∈ Ψ such that

X = w(supp(y)). Let x = w(y) and let x+ denote the normalized sum of elements

of support X = supp(x) in the W -orbit of x,

x+ =
1

|{y ∈ [x] : supp(y) = X}|




∑
y∈[x]

supp(y)=X

y


 .

(Note that |{y ∈ [x] : supp(y) = X}| is the index of Wx in WX , so it is nonzero

in k since the characteristic of k does not divide the order of W .) Since x+ is

a weighted sum of elements in the orbit of x, it does not depend on the choice

of w ∈ W above. Therefore, the element x+ depends only on the support of x

and we denote x+ by X+, where X = supp(x). The following Lemma shows that

w(X+) = w(X)+. Therefore, we obtain a complete system of primitive orthogonal

idempotents in (kF)W by appealing to the above Proposition.

Lemma 2.7. If w ∈W and X ∈ L, then w(X+) = w(X)+.

Proof. Let x, y ∈ F and let X = supp(x). If y is in the orbit of x and supp(y) = X,

then w(y) is in the orbit of w(x) and supp(w(y)) = w(X). This gives a bijection

between {y ∈ F : y ∈ [x], supp(y) = X} and {z ∈ F : z ∈ [w(x)], supp(z) =

w(X)}. Hence, w(x+) = (w(x))+ for any x ∈ F .

Let X ∈ L and w ∈ W . There exists a unique y ∈ Ψ such that X =

supp(u(y)) for some u ∈ W . So X+ = (u(y))+ by definition. If Z = wX, then Z =

(wu) supp(y). Therefore, (w(X))+ = Z+ = ((wu)(y))+ = w(u(y)+) = w(X+).



57

2.7 Projective Indecomposable Modules

In this section we use the idempotents constructed in the previous section to de-

scribe the indecomposable projective (kF)W -modules.

Let {eX}X∈L denote the complete system of primitive orthogonal idempotents

in kF constructed in Example 2.6. Then eX = X+ −∑
Y >X X

+eY for all X ∈ L,

where X+ was defined by

X+ =
1

[WX : Wx]

( ∑

w∈Wx∩WX

w(x)

)
=

1

|{y ∈ [x] : supp(y) = X}|




∑
y∈[x]

supp(y)=X

y


 ,

where x has support X and is W -conjugate to an element in Ψ. Then the set

{∑
w∈WX ew(X)

}
X∈L is a complete system of primitive orthogonal idempotents for

(kF)W (Proposition 2.4). This affords a (kF)W -module decomposition

(kF)W ∼=
⊕

[X]∈L/W
(kF)W

( ∑

w∈WX

ew(X)

)

and the (kF)W -modules (kF)W
(∑

w∈WX ew(X)

)
are all the projective indecompos-

able (kF)W -modules, upto isomorphism.

Proposition 2.8. Let X ∈ L. Then

(kF)W

( ∑

w∈WX

ew(X)

)
= span

{( ∑
w∈Wx

w(x)

)( ∑

u∈WX

eu(X)

)
: [supp(x)] = [X]

}
.

Therefore, rad(kF)W is spanned by differences
∑

w∈Wx w(x) − ∑
u∈W y u(y) with

[supp(x)] = [supp(y)].

Proof. If x ∈ F with supp(x) = v(X) for some v ∈ W , then
( ∑
w∈Wx

w(x)

)( ∑

u∈WX

eu(X)

)
=

∑

u∈WX

( ∑
w∈Wx

w(x)

)
eu(X)

=
∑

u∈WX




∑

Y ∈[X]

∑
w∈Wx

w(supp(x))=Y

w(x)


 eu(X)
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=
∑

u∈WX




∑
w∈Wx

w(supp(x))=u(X)

w(x)


 eu(X)

=
∑

u∈WX

( |WX |
|Wx| u(X+)

)
eu(X)

=
|WX |
|Wx|

∑

u∈WX

eu(X).

Therefore, |Wx|
|WX |

(∑
w∈Wx w(x)

) (∑
u∈WX eu(X)

)
=

∑
u∈WX eu(X). It follows that the

(kF)W -module (kF)W
(∑

w∈WX ew(X)

)
is spanned by elements of the form

( ∑
v∈W y

v(y)

)( ∑

u∈WX

eu(X)

)
=

( ∑
v∈W y

v(y)

)( ∑
w∈Wx

w(x)

)( ∑

u∈WX

eu(X)

)
.

Since the support of v(y)w(x) is v(supp(y)) ∨ w(supp(x)) ≥ w(supp(x)), the

product
(∑

v∈W y v(y)
) (∑

w∈Wx w(x)
)

is a linear combination of elements of the

form
(∑

w∈W z w(z)
)

with [supp(z)] ≥ [supp(x)]. But if [supp(z)] 6≤ [X], then

(∑
w∈W z w(z)

) (∑
u∈WX eu(X)

)
= 0 (by Lemma 1.4). Therefore, [supp(z)] = [X].

2.8 A W -Equivariant Quiver Map

This section lifts the W -action on F to a W -action on kQ and constructs a quiver

map ϕ : kQ → kF that is W -equivariant.

We begin by recalling the construction of the map ϕ : kQ → kF , where F is

the face semigroup of an arbitrary hyperplane arrangement and Q is the quiver of

kF . Then the construction will be specialized to reflection arrangements using the

primitive idempotents constructed above. This will allow us to define an action of

W on kQ and we will show that under this W -action the map ϕ : kQ → kF is

W -equivariant.
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Fix an orientation εX on each subspace X ∈ L. For x, y ∈ F with xl y, define

numbers [x : y] by

[x : y] = εX(~x1, . . . , ~xt)εY (~x1, . . . , ~xt, ~y1),

where ~x1, . . . , ~xt is a basis of X and ~y1 is a vector in y. Define a map ∂ : kF → kF
on x ∈ F by

∂(x) =
∑
ymx

[x : y]y.

For each X ∈ L let LX denote a nonempty set of elements of support X and let

λX = |LX |. Then the elements {eX}X∈L constructed using the recursion

eX =

(
1

λX

∑
x∈LX

x

)
−

(
1

λX

∑
x∈LX

x

)(∑
Y >X

eY

)

is a complete system of primitive orthogonal idempotents in kF (see Remark 1.6).

There is a k-algebra morphism ϕ : kQ → kF defined by

ϕ(X) = eX for each vertex X ∈ Q,

ϕ(Y → X) = λX (eX∂(x)eY ) for each arrow (X → Y ) ∈ Q,

where x is any face of support X. The kernel of ϕ is generated by the sum of all

the paths of length two in Q (see Section 1.8.3B).

Now let A be the reflection arrangement of the finite Coxeter group W and sup-

pose that {eX}X∈L is one of the complete systems of primitive orthogonal idempo-

tents defined in Section 2.6. Define ϕ : kQ → kF as above using these idempotents.

Define an action of W on kQ as follows. For w ∈W and X ∈ L, let

σX(w) = εX(~x1, . . . , ~xs)εwX(w~x1, . . . , w~xs),

where ~x1, . . . , ~xs is a basis of the subspace X. For w ∈ W and a path (X0 → · · · →
Xt) in Q define

w (X0 → · · · → Xt) = σX0(w)σXt(w) (w(X0) → · · · → w(Xt)) .
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Here Xi is viewed as a subspace of the ambient vector space V and w(Xi) is

defined using the action of w on V . For any w ∈ W and any vertex X in Q we

have wX = σX(w)2w(X) = w(X). If (X0 → · · · → Xt) is a path in Q, then

w (X0 → · · · → Xt) = w(Xt−1 → Xt) · · ·w(X0 → X1)

since σX(w)2 = 1 for all X ∈ L. Therefore w : kQ → kQ is an algebra isomorphism.

The following gives a geometric interpretation of σX(w)σY (w) if Y lX.

Lemma 2.9. Suppose Y lX in L and let w ∈ W with w(X) = X and w(Y ) = Y .

Then σX(w)σY (w) = −1 iff w swaps the halfspaces of X determined by Y .

Proof. If w(X) = X, then σX(w) = εX(~x1, . . . , ~xs)εw(X)(w~x1, . . . , w~xs) is the sign

of the transformation w|X . So if M is the matrix of w|X then σX(w) = det(M).

Now suppose that Y lX and w(X) = X and w(Y ) = Y . Let ~x1, . . . , ~xs be a

positively oriented orthonormal basis for Y . Then for some ~v ∈ X orthogonal to Y ,

the vectors ~x1, . . . , ~xs, ~v form a positively oriented orthonormal basis for X. Since

w is an orthogonal transformation, w(~v) is orthogonal to Y since ~v is orthogonal

to Y and w(~v1), . . . , w(~xs) is an orthonormal basis for Y . Therefore, w(~v) = λ~v,

where λ ∈ {±1}. Let M be the matrix of w|Y with respect to the basis ~x1, . . . , ~xs.

Then the matrix N of w|X with respect to the basis ~x1, . . . , ~xs, ~v is

N =



M 0

0 λ


 .

Therefore, σX(w) = det(N) = λ det(M) = λσY (w). Hence, σX(w)σY (w) = λ.

Therefore, σX(w)σY (w) is -1 if w swaps the halfspaces of X determined by Y and

is +1 otherwise.

The following describes the behaviour of the incidence numbers under the action

of W on F .
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Lemma 2.10. Suppose xl y in F . If w ∈ W , then

[wx : wy] = σsupp(x)(w)σsupp(y)(w)[x : y].

Proof. (For a geometric proof use the proceeding lemma.) Let X = supp(x) and

Y = supp(y). Let x1, . . . , xt be a positively oriented basis of X and vy be a vector

in y. Then wx1, . . . , wxt is a basis of wX and wvy is a vector in wy. Therefore,

σX(w)σY (w)[x : y] = εwX(wx1, . . . , wxt)εwY (wx1, . . . , wxt, wvy)εY (x1, . . . , xt, vy)
2

= εwX(wx1, . . . , wxt)εwY (wx1, . . . , wxt, wvy)

= [wx : wy].

We now describe the action of W on the images of the arrows of Q.

Lemma 2.11. Suppose X l Y . If supp(x) = X and w ∈ W , then

w(λXeX∂(x)eY ) = σX(w)σY (w) λw(X)ew(X)∂(wx)ew(Y ).

Proof. Note that

∂(x)eY =

(∑
ymx

[x : y]y

)
eY =




∑
ymx

supp(y)=Y

[x : y]y


 eY

since yeY = 0 if supp(y) 6≤ Y (Lemma 1.4). Since X l Y there are exactly two

faces y, y′ with support Y having x as a codimension one face [Brown, 1989, §I.4E

Proposition 3]. Therefore

∂(x)eY = ([x : y]y + [x : y′]y′) eY .

For w ∈ W , Lemma 2.10 and our assumption that w(eX) = ew(X) for all X ∈ L,

give

w(eX∂(y)eY ) = w
(
eX

(
[x : y]y + [x : y′]y′

)
eY

)
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= w(eX)w
(

[x : y]y + [x : y′]y′
)
w(eY )

= ew(X)

(
[x : y]wy + [x : y′]wy′

)
ew(Y )

= σX(w)σY (w)
(
ew(X)

(
[wx : wy]wy + [wx : wy′]wy′

)
ew(Y )

)

= σX(w)σY (w) ew(X)∂(wx)ew(Y ).

The number λX depends only on the orbit of X, so the result follows.

We can now prove that ϕ is W -equivariant.

Proposition 2.12. ϕ : kQ → kF is W -equivariant.

Proof. Let w ∈ W . If X is a vertex in Q, then w(ϕ(X)) = w(eX) = ew(X) =

ϕ(w(X)). If Y → X is an arrow in Q, then Lemma 2.11 gives

w (ϕ(Y → X)) = w (λXeX∂(x)eY )

= σX(w)σY (w)
(
λw(X)ewX∂(wx)ewY

)

= σX(w)σY (w) ϕ(wY → wX)

= ϕ(w(Y → X)).

If X0 → · · · → Xs is a path in Q, then

w (ϕ(X0 → · · · → Xs)) = w
(
ϕ
(

(Xs−1 → Xs) · · · (X0 → X1)
))

= w
(
ϕ(Xs−1 → Xs) · · ·ϕ(X0 → X1)

)

= w
(
ϕ(Xs−1 → Xs)

)
· · ·w

(
ϕ(X0 → X1)

)

= ϕ
(
w(Xs−1 → Xs)

)
· · ·ϕ

(
w(X0 → X1)

)

= ϕ
(
w(Xs−1 → Xs) · · ·w(X0 → X1)

)

= ϕ
(
w(X0 → · · ·Xs)

)
,
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where we used the facts that ϕ : kQ → kF and w : kF → kF are algebra

morphisms and that w (ϕ(X → Y )) = ϕ(w(X → Y )).

2.9 The Quiver of the Invariant Subalgebra

In this section a quiver QW will be defined using the action of W on Q. It will

then be shown that QW is the quiver of a subalgebra of (kF)W . When W = Sn,

this subalgebra is precisely (kF)Sn , giving that QSn is the quiver of (kF)Sn . The

quiver of the descent algebra D(Sn) is obtained by reversing the arrows of QSn .

Let QW denote the quiver on the vertex set L/W defined as follows. Suppose

[Y ]l [X] in L/W . By replacing Y with w(Y ) for a suitable w ∈ W we can suppose

Y lX in L. There is an arrow [X] → [Y ] in QW iff there does not exist a w ∈ W
satisfying w(X → Y ) = −(X → Y ). Equivalently, there is no w ∈ WX ∩WY with

σX(w)σY (w) = −1. Geometrically, this condition states that there is no w ∈ W

that swaps the two halfspaces of X determined by Y (see Lemma 2.9).

Define a map ψ : k(QW ) → kQ by

ψ([X]) =
∑

Y ∈[X]

Y and ψ([X] → [Y ]) =
∑

w∈WX→Y

w(X → Y ),

for vertices [X] in QW and arrows [X] → [Y ] in QW , where WX→Y denotes a set

of coset representatives of the stabilizer WX→Y of the arrow X → Y .

Lemma 2.13. ψ : k(QW ) → kQ is a well-defined k-algebra morphism.

Proof. To ensure that ψ extends to a k-algebra morphism we need only check that

ψ([Y ])ψ([X] → [Y ])ψ([X]) = ψ([X] → [Y ]) [Assem et al., 2006, §II Theorem 1.8].

Well,

ψ([X] → [Y ])ψ([X]) =
∑

w∈WX→Y

w(X → Y )
∑

r∈WX

r(X)
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=
∑

w∈WX→Y

(
w(X → Y )

∑

r∈WX

(wr)(X)

)

=
∑

w∈WX→Y

w

( ∑

r∈WX

(X → Y )r(X)

)

=
∑

w∈WX→Y

w ((X → Y )X)

=
∑

w∈WX→Y

w (X → Y )

=ψ([X] → [Y ]).

Similarly, ψ([Y ])ψ([X] → [Y ]) = ψ([X] → [Y ]).

Consider the composition ξ : k(QW )
ψ−→ kQ ϕ−→ kF . Since the image of ψ

is contained in the W -invariant subalgebra of kQ and since ϕ is W -equivariant,

the image of ξ is contained in (kF)W . Recall that an ideal of a path algebra is

admissible if it is contained in the square of the ideal generated by the arrows.

That is, every element in the ideal is a linear combination of paths of length at

least two.

Lemma 2.14. The kernel of ξ is an admissible ideal of k(QW ).

Proof. Suppose
∑

ρ λρρ ∈ ker(ξ) where ρ is a path in QW . Then
∑

ρ λρψ(ρ) is

a linear combination of paths in kQ with ϕ
(∑

ρ λρψ(ρ)
)

= 0 since ξ = ϕ ◦ ψ.

Since ker(ϕ) is an admissible ideal of kQ, it follows that
∑

ρ λρψ(ρ) is a linear

combination of paths in Q of length at least two. Therefore, by the definition of

ψ, each ρ must have been a path of QW of length at least two.

Theorem 1.9(d) of [Auslander et al., 1995] gives a condition to identify the

quiver of a finite dimensional k-algebra: Q is the quiver of a finite dimensional

split basic k-algebra A iff A ∼= kQ/I where I an admissible ideal of kQ. The above
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Lemma shows that ker(ξ) is an admissible ideal of k(QW ), therefore QW is the

quiver of a subalgebra of (kF)W .

We now proceed to show that when W = Sn, this subalgebra is the full algebra

(kF)W . We will need the case p = 2 of the following result. The general result for

all integers p ≥ 0 will then follow once we know the quiver of (kF)W .

Lemma 2.15. If W = Sn, then for all p ∈ N,

radp
(
(kF)W

)
= radp (kF) ∩ (kF)W .

Proof. This is Theorem 9.10 in [Schocker, 2005].

Lemma 2.16. If W = Sn, then ξ : k(QW ) → (kF)W is surjective.

Proof. We will show that ξ(k(QW )) + rad2
(
(kF)W

)
= (kF)W . The result then

follows from standard ring theory: if A is a k-algebra and A′ is a subalgebra of A

such that A′ + rad2(A) = A, then A′ = A [Benson, 1998, Proposition 1.2.8].

Since ϕ : kQ → kF is surjective and the vertices and arrows of Q generate

kQ as a k-algebra, the images of the vertices and arrows of Q under ϕ generate

kF as a k-algebra. It follows that rad2(kF) is spanned by elements ϕ(ρ) where ρ

is a path in Q of length at least two. Therefore, any element in (kF)W is a linear

combination of elements
∑

w∈W ρ w(ϕ(ρ)) where ρ ∈ Q, and
∑

w∈W ρ w(ϕ(ρ)) ∈
(
rad2 (kF) ∩ (kF)W

)
if the length of the path ρ is at least two. By Lemma 2.15,

∑
w∈W ρ w(ϕ(ρ)) ∈ rad2

(
(kF)W

)
if ρ has length at least two. We need only show

that the elements
∑

w∈W ρ w(ϕ(ρ)) ∈ ξ(k(QW )) if the length of ρ is at most one.

This follows from the fact that ϕ is W -equivariant:

∑

w∈WX

w(ϕ(X)) =
∑

w∈WX

ew(X) = ξ([X]),

∑

w∈WX→Y

w(ϕ(X → Y )) = ξ([X] → [Y ]).
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Theorem 2.17. QSn is the quiver of (kF)Sn. Therefore, the quiver of the descent

algebra of Sn is the quiver obtained from QSn by reversing the arrows.

Note that the proof of Lemma 2.16 does not use anything specific about the

group Sn except that rad2
(
(kF)Sn

)
= rad2 (kF)∩ (kF)Sn . Therefore, if this holds

holds for any finite Coxeter group W , then the quiver of (kF)W is QW . And from

this it would follow that radp
(
(kF)W

)
= radp (kF) ∩ (kF)W holds for any finite

Coxeter group W and for any p ∈ N. Indeed, if a ∈ radp(kF) ∩ (kF)W , then since

ξ is surjective there is an element c ∈ k(QW ) such that ξ(c) = a. Write c = c0 + c1

where c0 is a linear combination of paths of length at least p and c1 is a linear

combination of paths of length less than p. Then a = ξ(c0) + ξ(c1). It follows

that ξ(c1) must be zero since ξ is grade-preserving and a ∈ ⊕
q≥p(kF)q (since

a ∈ radp(kF)). Since c0 ∈ radp(k(QW )), we have a = ξ(c0) ∈ ξ
(
radp(k(QW ))

) ⊂
radp((kF)W ). The reverse containment is immediate.

2.10 Quiver Relations

From the proof of Lemma 2.14 it follows that any element in the kernel of ξ is

mapped by ψ to an element of ker(ϕ). Therefore, the quiver relations for (kF)W

are obtained by lifting the relations in ker(ϕ) to QW using ψ. Recall that the kernel

of ϕ is generated by the sum of all the paths of length two in [Y,X], where [Y,X]

is an interval of length two in Q.

It would be very useful to have a description of the relations directly in terms

of paths in QW .
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2.11 The Symmetric Group

This section gives a combinatorial description of the quiver of the algebra (kF)W

for W = Sn.

The Reflection Arrangement. Fix n ∈ N. The braid arrangement is the

hyperplane arrangement A in V = Rn consisting of the hyperplanes Hij = {v ∈
V : vi = vj} for 1 ≤ i < j ≤ n. The group of transformations generated by the

reflections in the hyperplanes in A can be identified with the symmetric group Sn

acting on V by permuting coordinates: for ω ∈ Sn and v ∈ V , define

ω(v) = ω((v1, . . . , vn)) = (vω−1(1), . . . , vω−1(n)).

The Intersection Lattice. A set partition of [n] = {1, . . . , n} is a collection

of nonempty subsets B = {B1, . . . , Br} of [n] such that
⋃
iBi = [n] and Bi∩Bj = ∅

for i 6= j. The sets Bi in B are called blocks. The elements of the intersection lattice

L of A are identified with set partitions of [n] via the following,

{B1, . . . , Br} ↔
{
v ∈ V : vi = vj if ∃h such that i, j ∈ Bh

}
=

r⋂

h=1

( ⋂
i,j∈Bh

Hij

)
,

where {B1, . . . , Br} is a set partition of [n]. Under this identification, if B and C

are set partitions of [n], then BlC iff B is obtained from C by merging two blocks

of C, and the action of Sn on L is given by ω({B1, . . . , Br}) = {ω(B1), . . . , ω(Br)}.
To simplify notation we will concatenate the elements of block. For example,

we will write {5, 134, 2} instead of {{5}, {1, 3, 4}, {2}}.
The Poset of Faces. Let v ∈ V be a vector in a chamber of A. Then v is not

on any of the hyperplanes Hij, so all the coordinates of v are distinct. Therefore,

there exists ω ∈ Sn such that vω(1) < . . . < vω(n). All vectors in the chamber satisfy

this identity, so the chamber can be identified with the permutation ω of [n]. The
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faces of the chamber are obtained by changing some of the inequalities to equalities,

so the faces F of A can be identified with set compositions (ordered set partitions)

of [n]. For example, (5, 134, 2) ↔ {v ∈ V : v5 < v1 = v3 = v4 < v2}. The partial

order on set compositions is (B1, . . . , Bm) ≤ (C1, . . . , Cl) iff (C1, . . . , Cl) consists

of a set composition of B1, followed by a set composition of B2, and so forth. The

support map supp : F → L forgets the order of the blocks in the set composition.

The action of Sn on F is given by ω((B1, . . . , Br)) = (ω(B1), . . . , ω(Br)).

The Semigroup of Faces. If (B1, . . . , Bl) and (C1, . . . , Cm) are set partitions

of [n], their product is the set partition of [n] given by

(B1, . . . , Bl) (C1, . . . , Cm)

= (B1 ∩ C1, B2 ∩ C1, . . . , Bl ∩ C1, · · · , B1 ∩ Cm, B2 ∩ Cm, . . . , Bl ∩ Cm)✄,

where ✄ means “delete empty intersections”.

Orbits of Set Partitions. The Sn-orbit of a set partition {B1, . . . , Bl} of

[n] depends only on the sizes of the blocks Bi, so L/Sn can be identified with

the poset of integer partitions of n and the quotient map L → L/Sn is given by

{B1, . . . , Bl} 7→ {|B1|, . . . , |Bl|}. (Recall that an integer partition of n is a set of

positive integers whose sum is n.) If b = {b1, . . . , bl} and c = {c1, . . . , cm} are

integer partitions of n, then bl c iff b is obtained from c by adding two elements

of c. That is, b = {c1, . . . , ĉi, . . . , ĉj, . . . , cm} ∪ {ci + cj}.
The Quiver of (kF)Sn. We can now describe the quiver of (kF)Sn .

Theorem 2.18. The quiver of (kF)Sn is the directed graph with one vertex for

each integer partition of n and exactly one arrow c→ b iff b is obtained from c by

adding two distinct elements of c.

Proof. The quiver of (kF)Sn is QSn , so we determine QSn . Recall that QSn is a
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directed graph on the vertex set L/Sn, which we identified with the set of integer

partitions of n. Suppose b = {b1, . . . , bl} and c = {c1, . . . , cm} are integer partitions

of n. By the definition of QSn , if c does not cover b, then there is no arrow from

c to b. So suppose b l c. Let C = {C1, . . . , Cm} denote a set partition of [n] with

|Ci| = ci for all 1 ≤ i ≤ m. Since b is obtained from c by adding two distinct

elements of c, the set partition B obtained by merging the corresponding blocks of

C satisfies |Bi| = bi for all 1 ≤ i ≤ m− 1. By re-indexing B and C we can suppose

that B = {C1 ∪ C2, C3, . . . , Cm}. There is an arrow from c to b in QSn iff there

does not exist an ω ∈ Sn with ω(C → B) = −(C → B).

Suppose c1 = c2. Then C1 and C2 have the same cardinality. Let ω be a permu-

tation of [n] that swaps these blocks and is the identity on elements not in C1∪C2.

Then ω fixes the set composition (C1 ∪ C2, C3, . . . , Cm), so it fixes the subspace

B pointwise. (For any Coxeter group W , if an element of W fixes a face set-wise

then it fixes the face pointwise [Humphreys, 1990, Proposition 1.15].) And ω maps

C to C, but not pointwise since it does not fix the set composition (C1, . . . , Cm).

Therefore, ω interchanges the halfspaces of C determined by B. It follows from

Lemma 2.9 that ω(C → B) = −(C → B). Therefore, there is no arrow from c to

b in QSn if b is obtained from c by adding two identical elements of c.

Suppose c1 6= c2. If ω ∈ Sn with ω(B) = B and ω(C) = C, then ω permutes

the blocks of B and the blocks of C. It follows that ω(C1) = C1 and ω(C2) =

C2. Let x = (C1, C2, C3, . . . , Cm) and y = (C1 ∪ C2, C3, . . . , Cm). Then, yω(x) =

(C1, C2, C3, . . . , Cm) = x. So w(x) and x are on the same side of supp(y) = B. It

follows from Lemma 2.9 that ω(C → B) = (C → B). Therefore, there is an arrow

from c to b in QSn if b is obtained from c by adding two distinct elements of c.

Corollary 2.19. The quiver of the descent algebra D(Sn) of Sn is the quiver
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obtained from QSn by reversing all the arrows.

2.12 Examples: Sn for n ≤ 6

This section describes in detail the quiver with relations of (kF)Sn for n ≤ 6.

2.12.1 Computing σX for Sn.

Before proceeding to the examples, we record a method for computing the values

of the functions σX for the symmetric group.

Suppose B = {B1, . . . , Bm} ∈ L is a set partition of [n]. By re-indexing the

blocks Bi of B, we suppose that B satisfies min(B1) < · · · < min(Bm). The

partition B corresponds to the subspace VB of vectors ~v ∈ V satisfying vi = vj if

i, j ∈ Bk for some 1 ≤ k ≤ m. Therefore, the vectors ~vBi
satisfying (~vBi

)j = 1 if

j ∈ Bi and 0 otherwise is a basis of VB. Orient VB by declaring (~vB1 , · · · , ~vBm) to

be a positive basis. Call this basis the canonical basis of VB. Since the action of

Sn on V permutes the coordinates of V , every ω ∈ Sn maps the canonical basis

of VB to a permutation of the canonical basis of Vω(B). This permutation of the

canonical basis of Vω(B) gives a permutation of the blocks of w(B), and σB(w) is

just the sign of this permutation.

Lemma 2.20. Suppose B = {B1, . . . , Bm} is a set partition of [n] satisfying

min(B1) < · · · < min(Bm). Then σB(w) is the sign of the permutation τ ∈ Sm

satisfying min(w(Bτ(1))) < · · · < min(w(Bτ(m))).

Proof. Let ~vB1 , . . . , ~vBm be the canonical basis for VB, as above. Therefore, σB(ω) =

εw(B) (ω(~vB1), . . . , ω(~vBm)). This is the determinant of the change of basis ma-

trix mapping ω(~vB1), . . . , ω(~vBm) to the canonical basis of Vω(B). Since the basis
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Figure 2.1: The quiver QS6 of the algebra (kF)S6.

ω(~vB1), . . . , ω(~vBm) is a permutation of the canonical basis for Vω(B), the change of

basis matrix is a permutation matrix (corresponding to τ), and its determinant is

precisely the sign of the permutation.

2.12.2 Examples: Sn for n ≤ 5

It is straightforward to check that the dimension of k(QSn) is the dimension of

(kF)Sn for 1 ≤ n ≤ 5. Therefore, the algebras k(QSn) and (kF)Sn are isomorphic

for 1 ≤ n ≤ 5.

2.12.3 Example: S6

See Figure 2.1 for the quiver QS6 . The dimension of k(QS6) is 33 while the dimen-

sion of (kF)S6 is 25 = 32. Therefore, the kernel of ξ is generated by exactly one

nonzero quiver relation. We will show that the relation is given by the sum of the
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two paths of length three starting from 2211 quiver of QS6 .

2211

²²
321

||xxxxxxxx

²² ""FFFFFFFF

51

""FF
FF

FF
FF

F 42

²²

33

6

Pick representatives in L of the above orbits.

U = {12, 3, 45, 6}

X = {123, 45, 6}
gggggggggg

WWWWWWWWWW

Y1 = {12345, 6}
WWWWWWWWWW
Y2 = {1236, 45} Y3 = {123, 456}

gggggggggg

Z = {123456}

Then,

ψ(2211 → 321 → 42 → 6)

= ψ(42 → 6) ψ(321 → 42) ψ(2211 → 321)

=




∑

w∈SY2→Z
6

w(Y2 → Z)







∑

u∈SX→Y2
6

u(X → Y2)





 ∑

v∈SU→X
6

v(U → X)


 .

If u(X) 6= v(X) or u(Y2) 6= w(Y2), then w(Y2 → Z)u(X → Y2)v(U → X) = 0. So

suppose u(X) = v(X) and u(Y2) = w(Y2). Since v(X) = u(X) and all the blocks

of X are distinct, we have v(123) = u(123), v(45) = u(45) and v(6) = u(6). It

follows that σX(v) = σX(u) by Lemma 2.20. Since there is only one element in the

interval [Z, v(X)] in the orbit of Y2, it follows that v(Y2) = w(Y2) = u(Y2) since

all three are in this interval. It follows that σY2(v) = σY2(w) = σY2(u) by Lemma

2.20. Together these give u(X → Y2) = v(X → Y2), w(Y2 → Z) = v(Y2 → Z) and
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that v ∈ (S6)(U→X) iff v ∈ (S6)(U→X→Y2→Z). Therefore,

ψ(2211 → 321 → 42 → 6) =
∑

v∈(S6)(U→X→Y2→Z)

v(U → X → Y2 → Z).

A similar argument gives

ψ(2211 → 321 → 51 → 6) =
∑

v∈(S6)(U→X→Y1→Z)

v(U → X → Y1 → Z).

Combining these with the quiver relations of Q gives,

(
ξ(2211 → 321 →42 → 6) + ξ(2211 → 321 → 51 → 6)

)

=


 ∑

v∈(S6)(U→X→Y3→Z)

v(U → X → Y3 → Z)


 + I.

The result follows once it is shown that
∑
v(U → X → Y3 → Z) ∈ I. Consider

U = {12, 3, 45, 6}
ttiiiiiiii

**UUUUUUUU

X = {123, 45, 6}
**UUUUUUUU

X ′ = {12, 3, 456}
ttiiiiiiii

Y3 = {123, 456}
²²

Z = {123456}

in the quiver Q. Then we have the relation

(U → X → Y3 → Z) + (U → X ′ → Y3 → Z) ∈ I.

Let w(123456) = (456123). Then w maps U , X, Y3 and Z to U , X ′, Y3 and Z,

respectively. Since w(U) = {45, 6, 12, 3}, it follows from Lemma 2.20 that σU(w) =

1. And since σZ(w) = 1, we have that

∑

v∈(S6)(U→X→Y3→Z)

v(U → X → Y3 → Z)

=
∑

v∈(S6)(U→X→Y3→Z)

(vw)(U → X ′ → Y3 → Z)
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=
∑

v∈(S6)(U→X′→Y3→Z)

v(U → X ′ → Y3 → Z).

Here we used the fact that (S6)
(U→X→Y3→Z)w is a set of coset representatives for

(S6)(U→X′→Y3→Z). Since the stabilizer of the path (U → X → Y3 → Z) is equal to

the stabilizer of that path (U → X ′ → Y3 → Z),

∑
v(U → X → Y3 → Z)

=
1

2

(∑
v(U → X → Y3 → Z) +

∑
v(U → X ′ → Y3 → Z)

)

=
1

2

∑
v
(

(U → X → Y3 → Z) + (U → X ′ → Y3 → Z)
)
∈ I.

2.13 Future Directions

As mentioned at the outset, this chapter represents an installment of an ongoing

project to study the descent algebra of W as a subalgebra of the face semigroup

algebra of the reflection arrangement W . The two main outstanding tasks are

determining the quiver of the descent algebra for arbitrary finite reflection groups,

and then determining the quiver relations.

The results pesented here provide a great starting point. The quiver of D(W )

has the quiver obtained from QW by reversing all the arrows as a subquiver, and

we know there are no other vertices in the quiver. Therefore, it remains only to

determine whether there are any other arrows. This is equivalent to determining

when Lemma 2.15 holds for p = 2 for an arbitrary W .

As for the quiver relations, almost nothing is known about these even for W =

Sn, so any information here would be new.
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2.14 Appendix: Primitive Idempotents Revisited

In Section 1.5 a complete system of primitive orthogonal idempotents in kF was

recursively constructed from the poset L. They were later used to construct a

complete system of primitive orthogonal idempotents in (kF)W . In this section it

will be shown that these idempotents can be constructed directly from the poset

L/W using an analagous recursive construction.

The two settings are very similar. In the first, the support map supp : F → L
maps a basis of the algebra kF into the poset L. The properties of this surjection

were used to construct a complete system of primitive orthogonal idempotents in

kF using lifts of X ∈ L under the support map. In the second setting, the elements

∑
y∈[x] y form a linear basis for the algebra (kF)W , and there is a natural way to

map these elements into the poset L/W . Namely,
∑

y∈[x] y maps to the W -orbit

of supp(x). The following Proposition shows that the same recursive construction

applied to this map yields a complete system of primitive orthogonal idempotents

in (kF)W .

It would be interesting to determine conditions on a map from a basis of an

algebra into a poset that would produce a complete system of primitive orthogonal

idempotents using the above construction.

Proposition 2.21. Suppose X ∈ L and x ∈ F with supp(x) = X. Then the

element X̂ = 1
|{y∈[x]:supp(y)=X}|

∑
y∈[x] y depends only on the W -orbit of X. For each

[X] ∈ L/W let f[X] be defined by the recursion,

f[X] = X̂ −
∑

[Y ]>[X]

X̂f[Y ].

Then {f[X]}[X]∈L/W is a complete system of primitive orthogonal idempotents for

(kF)W . In particular, f[X] =
∑

Y ∈[X] eY , where eY are the idempotents constructed
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in Example 2.6.

Proof. This follows by induction on [X] in the poset L/W . If [X] = [1̂], then X = 1̂

and f[1̂] = ̂̂1 = 1
|W |

∑
c∈C c = 1̂+ = e1̂. Let [X] ∈ L/W and suppose the result holds

for all [Y ] > [X]. Note that X̂ =
∑

Z∈[X] Z
+, where Z+ was defined in the previous

example. Therefore,

f[X] = X̂ −
∑

[Y ]>[X]

X̂f[Y ] =
∑

Z∈[X]


Z+ −

∑

[Y ]>[X]

Z+f[Y ]




=
∑

Z∈[X]


Z+ −

∑

[Y ]>[X]

Z+
∑

U∈[Y ]

eU


 =

∑

Z∈[X]


Z+ −

∑

[Y ]>[X]

∑
U∈[Y ]
U>Z

Z+eU




=
∑

Z∈[X]

(
Z+ −

∑
U>Z

Z+eU

)
=

∑

Z∈[X]

eZ .



CHAPTER 3

THE SEMIGROUP ALGEBRA OF A LEFT REGULAR BAND

3.1 Introduction

The face semigroup algebra of a hyperplane arrangement is an example of a class

of semigroups called left regular bands. These are semigroups S satisfying x2 = x

and xyx = xy for all x, y ∈ S. Much of the theory developed for the face semigroup

algebra of a hyperplane arrangement extends to left regular bands and this chapter

investigates these generalizations. In particular, we give a description of the quiver

of semigroup algebra of a left regular band with identity in terms of equivalence

classes of elements of the left regular band (Section 3.6). We also construct a

complete system of primitive orthogonal idempotents in the semigroup algebra

(Section 3.4), identify the projective indecomposable modules (Section 3.5) and

give a description of the Cartan invariants (Section 3.11). To illustrate the theory

we maintain two running examples throughout: the free left regular band; and the

face semigroup algebra of a hyperplane arrangement. No assumptions are made on

the characteristic of the field k.

The structure of this chapter is similar to the structure of Chapter 1.

3.2 Left Regular Bands

See [Brown, 2000, Appendix B] for foundations of left regular bands and for proofs

of the statements presented in this section.

A left regular band is a semigroup S satisfying the following two properties.

(LRB1) x2 = x for all x ∈ S.

77
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(LRB2) xyx = xy for all x, y ∈ S.

Define a relation on the elements of S by y ≤ x iff yx = x. This relation is a

partial order (reflexive, transitive and antisymmetric), so S is a poset.

Define another relation on the elements of S by y ¹ x iff xy = x. This relation

is reflexive and transitive, but not necessarily antisymmetric. Therefore we get a

poset L by identifying x and y if x ¹ y and y ¹ x. Let supp : S → L denote the

quotient map. L is called the support semilattice of S and supp : S → L is called

the support map.

Proposition 3.1. If S is a left regular band, then there is a semilattice L and a

surjection supp : S → L satisfying the following properties for all x, y ∈ S.

1. If y ≤ x, then supp(y) ≤ supp(x).

2. supp(xy) = supp(x) ∨ supp(y).

3. xy = x iff supp(y) ≤ supp(x).

4. If S ′ is a subsemigroup of S, then the image of S ′ in L is the support semi-

lattice of S ′.

Statement (1) says that supp is an order-preserving poset map. (2) says that

supp is a semigroup map where we view L as a semigroup with product ∨. (3) fol-

lows from the construction of L, and (4) follows from the fact that (3) characterizes

L upto isomorphism. If S has an identity element then L has a minimal element

0̂. If, in addition, L is finite, then L has a maximal element 1̂, and is therefore a

lattice [Stanley, 1997, Proposition 3.3.1]. In this case L is the support lattice of S.

Example 3.2 (The Free Left Regular Band). The free left regular band F (A)

with identity on a finite set A is the set of all (ordered) sequences of distinct
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abc acb bac bca cab cba

ab

--
--

--
ac

´´
´´
´´

ba

--
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--
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||
||

||
||

|

∅

Figure 3.1: The poset of the free left regular band F ({a, b, c}) on

three generators and its support lattice.

elements from A with multiplication defined by

(a1, . . . , al) · (b1, . . . , bm) = (a1, . . . , al, b1, . . . , bm)✄

where ✄ means “delete any element that has occured earlier”. Equivalently, F (A)

is the set of all words on the alphabet A that do not contain any repeated letters.

The empty sequence is an element of F (A), therefore F (A) contains an identity

element. The support lattice of F (A) is the lattice L of subsets of A and the support

map supp : F (A) → A sends a sequence (a1, . . . , al) to the set of elements in the

sequence {a1, . . . , al}. Figure 3.1 shows the Hasse diagrams of the poset (F (A),≤)

and the support lattice of F (A), where A = {a, b, c}.

Example 3.3 (Hyperplane Arrangements). The face semigroup F of a hy-

perplane arrangement A is a left regular band. The support semilattice is the

intersection semilattice L of the arrangement. The support map supp : F → L
sends a face of the arrangement to the intersection of all the hyperplanes of the

arrangement that contain the face. If A is a central arrangement, then the left

regular band F contains an identity element.
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3.3 Representations of the Semigroup Algebra

Let k denote a field and S a left regular band. The semigroup algebra of S is denoted

by kS and consists of all formal linear combinations
∑

s∈S λss, with λs ∈ k and

multiplication induced by λss · λtt = λsλtst, where st is the product of s and t in

the semigroup S. The following summarizes Section 7.2 of [Brown, 2000].

Since S and L are semigroups and supp : S → L is a semigroup morphism,

the support map extends linearly to a surjection of semigroup algebras supp :

kS → kL. The kernel of this map is nilpotent and the semigroup algebra kL is

isomorphic to a product of copies of the field k, one copy for each element of L.

Standard ring theory implies that ker(supp) is the Jacobson radical of kS and

that the irreducible representations of kS are given by the components of the

composition kS
supp−→ kL

∼=−→ ∏
X∈L k. This last map sends X ∈ L to the vector

with 1 in the Y -position if Y ≥ X and 0 otherwise. The X-component of this

surjection is the map χX : kS → k defined on the faces y ∈ S by

χX(y) =





1, if supp(y) ≤ X,

0, otherwise.

The elements

EX =
∑
Y≥X

µ(X, Y )Y ∈ kL, (3.3.1)

one for each X ∈ L, correspond to the standard basis vectors of
∏

X∈L k under the

isomorphism kL ∼= ∏
X∈L k. They form a basis of kL and are a complete system

of primitive orthogonal idempotents in kL.
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3.4 Primitive Idempotents of the Semigroup Algebra

See Section 1.5 for the definition of a complete system of primitive orthogonal

idempotents.

Let S denote a left regular band with identity. For each X ∈ L, fix an x ∈ S

with supp(x) = X and define elements in kS recursively by the formula,

eX = x−
∑
Y >X

xeY . (3.4.1)

Lemma 3.4. Let w ∈ S and X ∈ L. If supp(w) 6≤ X, then weX = 0.

Proof. The proof of Lemma 1.4 only uses the left regular band structure of F .

Theorem 3.5. Let S denote a finite left regular band with identity and L its

support lattice. Let k denote an arbitrary field. The elements {eX}X∈L form a

complete system of primitive orthogonal idempotents in the semigroup algebra kS.

Proof. The proof of Theorem 1.5 only uses the left regular band structure of F .

Remark 3.6. We can replace x ∈ S in (3.4.1) with any linear combination x̃ =

∑
supp(x)=X λxx of elements of support X whose coefficients λx sum to 1. The proofs

still hold since the element x̃ is idempotent and satisfies supp(x̃) = X and x̃y = x̃

if supp(y) ≤ X. Unless explicitly stated we will use the idempotents constructed

above.

Corollary 3.7. The set {xesupp(x) | x ∈ S} is a basis of kS of primitive idempo-

tents.

Proof. See Proposition 1.7.
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3.5 Projective Indecomposable Modules of the Semigroup

Algebra

For X ∈ L, let SX ⊂ S denote the set of elements of support X. For y ∈ S and

x ∈ SX define

y · x =





yx, supp(y) ≤ supp(x),

0, supp(y) 6≤ supp(x).

Then · defines an action of kS on the k-vector space kSX spanned by SX .

Lemma 3.8. Let X ∈ L. Then {xeX | supp(x) = X} is a basis for (kS)eX .

Proof. See Lemma 1.8.

Proposition 3.9. There is a kS-module isomorphism kSX ∼= kSeX given by right

multiplication by eX . Therefore, the kS-modules kSX are all the projective inde-

composable kS-modules. The radical of kSX is spank{y − y′ | y, y′ ∈ SX}.

Proof. See Proposition 1.9.

3.6 The Quiver of the Semigroup Algebra

Let A be a finite dimensional k-algebra whose simple modules are all one dimen-

sional. The Ext-quiver or quiver of A is the directed graph with one vertex for each

isomorphism class of simple modules and dimk(Ext1
A(MX ,MY )) arrows from X to

Y , where MX and MY are simple modules of the isomorphism classes corresponding

to the vertices X and Y , respectively.

Let S be a left regular band with identity and let L denote the support lattice

of S. Let X,Y ∈ L with Y ≤ X and fix y ∈ S with supp(y) = Y . Define a relation
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on the elements of SX by x ^ x′ if there exists an element w ∈ S satisfying

y < w, w < yx and w < yx′. (Equivalently, yw = w, wx = yx, wx′ = yx′ and

supp(w) < X.) Note that x ^ x′ iff x ^ yx′. Also note that for X = 1̂ and Y = 0̂,

the relation becomes x ^ x′ iff there exists w 6= 1 such that x > w and x′ > w.

The relation ^ is symmetric and reflexive, but not necessarily transitive. Let

∼ denote the transitive closure of ^. Let aXY = #(SX/ ∼) − 1, the number of

equivalence classes of ∼ minus one. If Y 6≤ X, define aXY = 0. In order to avoid

confusion, we denote by aSXY the number aXY computed in S. Since u < v implies

yu < yv for all u, v, y ∈ S (follows from (LRB2)), it follows that the relations ^

and ∼ do not depend on the choice of y with supp(y) = Y .

Lemma 3.10. Let S be a finite left regular band with identity and L its support

lattice. Let MX and MY denote the simple modules with irreducible characters χX

and χY , respectively. Then dim(Ext1
A(MX ,MY )) = aXY .

Proof. This proof is rather lengthy, so we banish it to a later section (3.15).

Theorem 3.11. Let S be a left regular band with identity and L the support lattice

of S. Let k denote a field. The quiver of the semigroup algebra kS has L as the

vertex set and aXY arrows from the vertex X to the vertex Y .

3.7 An Inductive Construction of the Quiver

In this section we describe how knowledge about the numbers aS
′

1̂0̂
for certain sub-

semigroups S ′ of S determine all the numbers aSXY . This allows for an inductive

construction of the quiver of a left regular band.

Suppose S is a left regular band with identity. Let X, Y ∈ L with Y ≤ X

and let y ∈ S be an element with supp(y) = Y . Then yS = {yw : w ∈ S} and
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S≤X = {w ∈ S : supp(w) ≤ X} are subsemigroups of S.

Proposition 3.12. Let S be a left regular band with identity, and let L denote

the support lattice of S. Suppose y ∈ S and X ∈ L. The quiver of the semigroup

algebra k(yS≤X) of the left regular band yS≤X is the full subquiver of the quiver of

the semigroup algebra kS on the vertices in the interval [supp(y), X] ⊂ L.

The Proposition follows from the following Lemma that shows the number of

arrows from X to Y in the quiver of kS is the number of arrows from 1̂ to 0̂ in the

quiver of k(yS≤X), where y ∈ S is any element of support Y . Recall that a
yS≤X

1̂0̂

denotes the number a1̂0̂ computed in the left regular band yS≤X .

Lemma 3.13. Let S be a left regular band with identity. Then aSXY = a
yS≤X

1̂0̂
. That

is, the number aXY computed in S is the number a1̂0̂ computed in yS≤X .

Proof. If supp(y) 6≤ X, then yS≤X is empty. So aSX,Y = 0 = a
yS≤X

1̂0̂
. So suppose

supp(y) ≤ X.

Since x ∼ x′ iff x ∼ yx′ for any elements x, x′ of support X, every equivalence

class of ∼ (on SX) contains an element of ySX . Therefore, aXY + 1 is the number

of equivalence classes of ∼ restricted to ySX .

Since yS≤X is a subsemigroup of S, the support lattice of yS≤X is the image

of yS≤X in L. Therefore, the support lattice of yS≤X is the interval [Y,X] in L.

Since the top and bottom elements of [Y,X] are X and Y respectively, the number

a
yS≤X

1̂0̂
+ 1 is the number of equivalence classes of ∼ restricted to ySX .

Therefore, if the numbers a
yS≤X

1̂0̂
are known for all the subsemigroups of S of

the form yS≤X , then the quiver of kS is known. We illustrate this technique with

two examples in the next two sections.
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3.8 Example: The Free Left Regular Band

Let S = F (A) denote the free left regular band on a finite set A (defined in

Example 3.2). Recall that the support lattice L of S is the set of subsets of A.

Let y ∈ S and let Y ⊂ A denote the set of elements occuring in the sequence y.

Then yS is the set of all sequences of elements of A (without repetition) that begin

with the sequence y. Therefore, yS is isomorphic to the free left regular band on

A\Y . If X ⊂ A (so X ∈ L), then S≤X is the set of all sequences containing only

elements from X (without repetition). Therefore, S≤X is also a free left regular

band. It follows that yS≤X is a free left regular band for any y ∈ S and X ⊂ A.

Therefore, the quiver of S is determined once the numbers a0̂1̂ = aA∅ are known

for any free left regular band.

If two sequences x, y ∈ S begin with the same element a ∈ A, then ax = x

and ay = y. Therefore, x ∼ y. Conversely, if x ^ y, then there is a nonempty

sequence w such that wx = x and wy = y. Then x and y both begin with the first

element of w. Therefore, x ∼ y iff x and y are sequences begining with the same

element. So the equivalence classes of ∼ are determined by the first elements of

the sequences in S. Hence, a1̂0̂ = #(A)− 1. This argument applies to any free left

regular band with identity, so aXY = #(X\Y )− 1 since yS≤Y is isomorphic to the

free left regular band on the elements X\Y .

Theorem 3.14. (K. S. Brown, private communication.) Let S = F (A) be the free

left regular band on a finite set A and let k denote a field. Then the quiver of the

semigroup algebra kS has one vertex X for each subset X of A and #(X\Y ) − 1

arrows from X to Y if Y ⊂ X (and no other arrows or vertices).
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Figure 3.2: The support lattice and the quiver of the semigroup

algebra of the free left regular band on three generators. See Figure

3.1.

3.9 Example: The Face Semigroup of a Hyperplane Ar-

rangement

Let F be the face semigroup of a central hyperplane arrangement A and let L
be the intersection lattice of A (see Example 3.3.) Let X, Y ∈ L and y a face of

support Y . Then the subsemigroup yF≤X is the semigroup of faces of a hyperplane

arrangement with intersection lattice [Y,X] ⊂ L. (Specifically, this hyperplane

arrangement is given by {X ∩H : H ∈ A, Y ⊂ H,X 6⊂ H}.) Therefore, we know

all the numbers aXY for F if we know the number a1̂0̂ for the face semigroup of an

arbitrary arrangement.

If L contains only one element, then 0̂ = 1̂ and a1̂0̂ = 0. Suppose that L contains

at least two elements. It is well-known that for any two distinct chambers c and

d, there exists a sequence of chambers c0 = c, c1, . . . , ci = d such that cj−1 and cj

share a common codimension one face wj for each 1 ≤ j ≤ i [Brown, 1989, §I.4E

Proposition 3]. Therefore, cj−1 ^ cj unless wj is of support 0̂, in which case L has
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two elements. Equivalently, c ∼ d iff the arrangement is of rank greater than 2. So

if L has exactly two elements, then a1̂0̂ = 1 and if L has more than two elements

then a1̂0̂ = 1.

Theorem 3.15 (Theorem 1.19). The quiver Q of the semigroup algebra kF
coincides with the Hasse diagram of L. That is, there is exactly one arrow X → Y

iff Y lX.

3.10 Idempotents in the subalgebras k(yS) and kS≥X

This section describes the subalgebras of kS generated by the subsemigroups yS

and S≤Y of S.

Let S be a left regular band. Recall that for y ∈ S, the set yS = {yw : w ∈ S} =

{w ∈ S : w > y} is a subsemigroup of S. Note that if supp(y′) = supp(y) then the

semigroups yS and y′S are isomorphic with isomorphism given by multiplication

by y (the inverse is multiplication by y′). Since yS is a subsemigroup of S, the

support lattice of yS is the image of yS in L by Propositon 3.1, which is the

interval [Y, 1̂].

Proposition 3.16. Let S be a left regular band, let y ∈ S and let Y = supp(y).

There exists a complete system of primitive orthogonal idempotents {eX : X ∈ L}
in kS such that {eX : X ≥ Y } is a complete system of primitive orthogonal

idempotents in the semigroup algebra k(yS). Moreover, k(yS) = (
∑

X≥Y eX)kS.

Proof. For each X ∈ L, fix x ∈ S with supp(x) = X. If X ≥ Y , then replace x with

yx. Note that supp(yx) = supp(x) since X ≥ Y . Therefore, x > y if X ≥ Y . The

formula eX = x −∑
W>X xeW for X ∈ L defines a complete system of primitive

orthogonal idempotents for kS (Theorem 3.5). And since the support lattice of yS
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is [Y, 1̂] ⊂ L, the elements eX = x − ∑
W>X xeW for X ≥ Y define a complete

system of primitive orthogonal idempotents in k(yS). Since y is the identity of yS,

we have y =
∑

X≥Y eX . Therefore, k(yS) = y(kS) = (
∑

X≥Y eX)kS.

If Y ∈ L, then S≤Y = {w ∈ S : supp(w) ≤ Y } is a subsemigroup of S. The

support lattice of S≤Y is the interval [0̂, Y ] of L. Let projkS≤Y
: kS → kS≤X denote

the projection onto the subspace kS≤X of kS.

Proposition 3.17. Let S be a left regular band and Y ∈ L. Let {eX : X ∈
L} denote a complete system of primitive orthogonal idempotents of kS. Then

{projkS≤Y
(eX) : X ≤ Y } is a complete system of primitive orthogonal idempotents

of kS≤Y . Moreover, the semigroup algebra k(S≤Y ) is isomorphic to kS(
∑

X≤Y eX).

Proof. The map projkS≤Y
is an algebra morphism kS → kS≤Y . This follows from

the fact that supp(wx) = supp(w) ∨ supp(x) for any x,w ∈ S. So if X ≤ Y , then

projkS≤Y
(eX) = x−∑

W>X x projkS≤Y
(eW ) since eX = x−∑

W>X xeW . Therefore,

the elements projkS≤Y
(eX) for X ≤ Y form a complete system of primitive orthog-

onal idempotents for the semigroup algebra of the left regular band S≤Y (Theorem

3.5). Since projkS≤Y
is an algebra morphism, it restricts to a surjective morphism of

algebras projkS≤Y
: kS(

∑
X≤Y eX) → k(S≤Y ). Since kSX ∼= (kS)eX for all X ∈ L

as kS-modules (Proposition 3.9), dim(kS≤Y ) = dim(
∑

X≤Y (kS)eX). So projkS≤Y

is an isomorphism. Its inverse is right multiplication by
∑

X≤Y eX .

3.11 Cartan Invariants of the Semigroup Algebra

Recall that the Cartan invariants of a finite dimensional k-algebra A are the num-

bers dimk(HomA(AeX , AeY )), where {eX}X∈I is a complete system of primitive

orthogonal idempotents for A. They are independent of the choice of {eX}X∈I .
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Let S be a left regular band with identity and let L denote the support lattice

of S. For X,Y ∈ L, define numbers m(Y,X) follows. If Y 6≤ X, then m(Y,X) = 0.

If Y ≤ X, then define m(Y,X) by the formulas

∑
W≤Y≤X

m(Y,X) = #(wSX),

one for each W ∈ L, where w is an element of support W . Recall that the number

#(wSX) does not depend on the choice of w with supp(w) = W . Equivalently,

m(Y,X) =
∑

Y≤W≤X
µ(Y,W ) #(wSX),

where µ is the Möbius function of L [Stanley, 1997, §3.7].

Proposition 3.18. Let S be a left regular band with identity. Let {eX}X∈L denote

a complete system of primitive orthogonal idempotents for kS. Then for any X, Y ,

dim(eY kSeX) = dim HomkS(kSeY , kSeX) = m(Y,X).

Therefore, the numbers m(Y,X) are the Cartan invariants of kS.

Proof. The first equality follows from the identity HomA(Ae,Af) ∼= eAf for idem-

potents e, f of a k-algebra A. If Y 6≤ X, then it follows from (LRB2) and Lemma

3.4 that eY kSeX = 0. Suppose that Y ≤ X. From the previous section, k(yS) =

∑
W≥Y eWkS for some complete system of primitive orthogonal idempotents. Com-

bined with the isomorphism kSX ∼= kSeX we get k(ySX) ∼= ⊕
Y≤W≤X eWkSeX .

Therefore,

∑
Y≤W≤X

m(W,X) = dim(k(ySX)) =
∑

Y≤W≤X
dim(eWkSeX).

The result now follows by induction. If X = Y , then dim eXkSeX = m(X,X).

Suppose the result holds for all W with Y < W ≤ X. Then

dim eY kSeX =
∑

Y≤W≤X
m(W,X)−

∑
Y <W≤X

dim eWkSeX
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=
∑

Y≤W≤X
m(W,X)−

∑
Y <W≤X

m(W,X)

= m(Y,X).

3.12 The Cartan Invariants for Hyperplane Arrangements

Let F denote the semigroup of faces of a hyperplane arrangement A. Then #(wFX)

is the number of faces of support X containing w as a face. Zaslavsky’s Theorem

[Zaslavsky, 1975] gives that this is
∑

W≤Y≤X |µ(Y,X)|. Therefore, the Cartan in-

variants of kF are m(Y,X) = |µ(Y,X)|. This was also proved in Proposition 1.11.

3.13 The Cartan Invariants for a Free Left Regular Band

Let S be a free left regular band on the finite set A. The support lattice of S is the

lattice of subsets of A. Therefore, µ(Y,W ) = (−1)
#(W\Y ) [Stanley, 1997, Example

3.8.3] for any Y,W ∈ L. And #(wSX) = #(X\W )! since the number of elements

of maximal support in the free left regular band on A is precisely #A!. If n = #X

and j = #Y , and Y ⊂ X, then

m(Y,X) =
∑

Y≤W≤X
µ(Y,W ) #(wSX)

=
∑

Y≤W≤X
(−1)

#W−j (n− #W )!

=
n∑
i=j

∑
Y⊂W⊂X
#W=i

(−1)i−j(n− i)!

=
n∑
i=j

(−1)i−j(n− i)!

(
n− j

i− j

)

= (n− j)!
n∑
i=j

(−1)i−j

(i− j)!
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= (n− j)!

n−j∑
i=0

(−1)i

i!
.

Therefore, the number m(Y,X) depends only on the cardinality of X\Y and we

denote it by mi where i = #(X\Y ).

We will now prove that these numbers count paths in the quiver of kS. For a

set A of cardinality n, let Qn be the directed graph with one vertex for each subset

of A and #(X\Y )− 1 arrows from X to Y if Y ⊂ X. Let pn denote the number of

paths in Qn beginning at A and ending at ∅. Note that if Y ⊂ X ⊂ A, then the

number of paths beginning at X and ending at Y in Qn is pm where m = #(X\Y ).

For each 0 ≤ i ≤ n− 1 there are n− i− 1 arrows from A to sets of size i, and

there are
(
n
i

)
such sets, so pn =

∑
0≤i≤n−1

(
n
i

)
(n− i− 1)pi for n ≥ 1. Equivalently,

by splitting n− i− 1,

∑
0≤i≤n

(
n

i

)
pi =

∑
0≤i≤n−1

(
n

i

)
(n− i)pi.

If the mi satisfy the above recurrence, then mi = pi for all i since m0 = 1 = p0.

∑
0≤i≤n−1

(
n

i

)
(n− i)mi =

∑
0≤i≤n−1

n!

(n− i− 1)! i!
mi

=
∑

0≤i≤n−1

n!

(n− i− 1)! i!

(
i!

∑
0≤j≤i

(−1)j

j!

)

=
∑

0≤i≤n−1

n!

(n− i− 1)!

( ∑
0≤j≤i

(−1)j

j!

)

=
∑

1≤k≤n

n!

(n− k)!

( ∑

0≤j≤k−1

(−1)j

j!

)

=
∑

1≤k≤n

n!

(n− k)!

( ∑

0≤j≤k

(−1)j

j!
− (−1)k

k!

)

=
∑

1≤k≤n

n!

(n− k)!

( ∑

0≤j≤k

(−1)j

j!

)
−

∑

1≤k≤n

n!

(n− k)!

(
(−1)k

k!

)

=
∑

1≤k≤n

(
n

k

) (
k!

∑

0≤j≤k

(−1)j

j!

)
−

∑

1≤k≤n

(
n

k

)
(−1)k



92

=
∑

1≤k≤n

(
n

k

)
mk + 1

=
∑

1≤k≤n

(
n

k

)
mk +

(
n

0

)
m0

=
∑

0≤k≤n

(
n

k

)
mk.

Theorem 3.19. (K. S. Brown, private communication.) Let S = F (A) be the free

left regular band on a finite set A. Then kS ∼= kQ, where kQ is the path algebra of

the quiver Q of kS.

Proof. Since Q is the quiver of kS, there is an algebra surjection kQ→ kS, where

kQ is the path algebra of Q. The canonical basis for kQ is the set of paths in Q, so

using the fact that m(Y,X) = dim(eY kSeX) counts the number of paths in Q from

X to Y , we have dim(kQ) =
∑

Y,X m(Y,X) =
∑

Y,X dim(eY kSeX) = dim(kS).

3.14 Future Directions

Problem 1. Although this chapter successfully determines the quiver of the semi-

group algebra of a left regular band, it says nothing about the quiver relations.

Describe the quiver relations of the semigroup algebra of a left regular band with

identity.

Problem 2. We proved that the face semigroup algebra of a hyperplane arrange-

ment is a Koszul algebra. Since this is the semigroup algebra of a left regular band,

it is natural to ask this question for all left regular bands. Determine which left

regular bands give Koszul semigroup algebras.

Problem 3. Another nice property of the face semigroup algebra of a hyperplane

arrangement is that the quiver of the semigroup algebra coincides with the support

lattice of the semigroup. In fact, the support lattice completely determines the
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semigroup algebra. Determine the left regular bands S for which the quiver of kS

coincides with the support lattice of L. (From our description of the quiver of kS,

we have a description of these left regular bands in terms of the equivalence classes

of ∼.) Determine those S for which the support lattice L completely determines

kS.

Problem 4. A band is a semigroup B satisfying b2 = b for all b ∈ B. Left reg-

ular bands are examples of bands and it would be interesting to generalize the

above results to arbitrary bands. Describe the quiver of the semigroup algebra kB

of a band B with identity. Construct a complete system of primitive orthogonal

idempotents for kB. Determine the bands B for which kB is a Koszul algebra.
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3.15 Appendix: Proof of Lemma 3.10

Lemma 3.10. Let S be a finite left regular band with identity and L its support

lattice. Let MX and MY denote the simple modules with irreducible characters χX

and χY , respectively. Then dim(Ext1
A(MX ,MY )) = aXY .

Proof. As a vector space MX = k and the action of kS on MX is given by χX : if

y ∈ S and λ ∈ k, then y · λ = χX(y)λ.

Since the following is a short exact sequence of kS-modules with kSX projective,

0 −→ ker (χX |kS) −→ kSX
χX−→MX −→ 0

Proposition 7.2 in Chapter V of [Cartan and Eilenberg, 1999] gives the exact se-

quence

HomkS(kSX ,MY ) −→ HomkS(ker (χX |kS) ,MY ) −→ Ext1
kS(MX ,MY ) −→ 0.

Let K denote the kernel of χX |kSX
. Then K is spanned by the differences of ele-

ments of support X. If f ∈ HomkS(K, MY ) and x, x′ are elements of support X,

then f(x − x′) = 1f(x − x′) = χY (y)f(x − x′) = y · f(x − x′) = f(y · (x − x′)),

for any element y of support Y . So if Y 6≤ X or if Y = X, then f = 0. Therefore,

HomkS(K,MY ) = 0 if Y 6< X. It follows that

Ext1
kS(MX ,MY ) = 0 = aXY for Y 6< X.

Suppose Y < X. If f ∈ HomkS(kSX ,MY ), then for all x ∈ SX , f(x) = f(x2) =

f(x · x) = x · f(x) = χY (x)f(x) = 0f(x) = 0 for all x ∈ S with supp(x) = X.

Therefore, HomkS(kSX ,MY ) = 0. Hence,

Ext1
kS(MX ,MY ) ∼= HomkS(K,MY ) for Y < X.
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Suppose x ^ x′. Then there exists a w ∈ S with y < w, supp(w) < X, wx = yx

and wx = yx′. Then x − x′ ∈ K, and for any f ∈ HomkS(K, MY ) we have

f(x − x′) = χY (y)f(x − x′) = f(yx − yx′) = f(wx − wx′) = f(w · (x − x′)) =

w · f(x − x′) = χY (w)f(x − x′) = 0f(x − x′) = 0. Therefore, f(x − x′) = 0 if

x ^ x′. If x ∼ x′, then there exist x0 = x, x1, . . . , xi = x′ such that xj−1 ^ xj for

1 ≤ j ≤ i, and f(x−x′) = f(x0−x1)+f(x1−x2)+· · ·+f(xi−1+xi) = 0. Therefore,

f(x − x′) = 0 if x ∼ x′. So f can only be nonzero on differences of elements in

different equivalence classes of ∼. Moreover, the equivalence classes determine f :

if u ∼ x and u′ ∼ x′, then f(u−u′) = f(u−x) +f(x−x′) +f(x′−u′) = f(x−x′).
Therefore,

dim(Ext1
kS(MX ,MY )) = dim(HomkS(K,MY )) ≤ aXY .

Fix y with supp(y) = Y and let x, x′ ∈ SX with x 6∼ x′. Since {u − x : u 6=
x, supp(u) = X} is a basis for K, we get a well-defined linear function f : K → k

by defining

f(u− x) =





1, if u ∼ x′,

0, otherwise.

We now show that f : K → MY is a kS-module map. That is, f(w · (u − x)) =

χY (w) · f(u− x) for all w ∈ S and for all u ∈ SX .

Suppose supp(w) 6≤ Y . Then w · f(u− x) = 0 since w acts trivially on MY . If

supp(w) 6< X, then w acts trivially on K and so w ·f(u−x) = 0 = f(w ·(u−x)). So

suppose supp(w) < X. Then f(w ·(u−x)) = f(wu−wx) = f(wu−x)−f(wx−x).

Since v ∼ x′ iff yv ∼ x′ for any v ∈ SX , it follows that f(wu − x) = f(ywu − x)

and f(wx − x) = f(ywx − x). If supp(yw) = X, then ywu = yw = ywx (LRB2),

so f(w · (u−x)) = 0. If supp(yw) < X, then we have an element v = yw satisfying
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v > y, supp(v) < X, v(wu) = y(wu) and v(wx) = y(wx). That is, wu ∼ wx and

it follows that f(wu− x) = f(wx− x). So f(w · (u− x)) = 0.

Suppose supp(w) ≤ Y . Then w acts as the identity on MY . Hence, w·f(u−x) =

f(u− x). Since supp(w) ≤ Y and Y ≤ X, we have that supp(w) ≤ X. Therefore,

f(w · (u − x)) = f(wu − wx) = f(wu − x) − f(wx − x). Since v ∼ x′ iff yv ∼ x′,

we have f(wu − x) = f(y(wu) − x) = f(yu − x) = f(u − x) since supp(w) ≤ Y .

Similarly, f(wx− x) = f(x− x) = 0. Therefore, f(w · (u− x)) = f(u− x).

This establishes that f : K →MY is a kS-module map. And since f is nonzero

only on differences of the form u − u′ with u ∼ x and u′ ∼ x′, there are exactly

aXY such kS-module maps. These maps are linearly independent, therefore

dim(Ext1
kS(MX ,MY )) = dim(HomkS(K,MY )) ≥ aXY .
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