The Face Semigroup Algebra of a Hyperplane Arrangement A Thesis Defence

Franco V Saliola saliola@gmail.com

Cornell University

15 May 2006

A hyperplane arrangement A is a finite set of hyperplanes in \mathbb{R}^n .

A hyperplane arrangement A is a finite set of hyperplanes in \mathbb{R}^n .

A hyperplane arrangement A is a finite set of hyperplanes in \mathbb{R}^n .

A hyperplane arrangement A is a finite set of hyperplanes in \mathbb{R}^n .

Assumption: all hyperplanes contain $0 \in \mathbb{R}^n$.

The Faces $\mathcal F$

The hyperplanes dissect \mathbb{R}^n into polyhedral sets.

The Faces $\mathcal F$

The hyperplanes dissect \mathbb{R}^n into polyhedral sets.

The Faces $\mathcal F$

The hyperplanes dissect \mathbb{R}^n into polyhedral sets.

The Faces \mathcal{F}

The hyperplanes dissect \mathbb{R}^n into polyhedral sets.

The set of faces of these polyhedra are the faces of \mathcal{A} .

Partial order on faces:

$$f \leq g \iff f \text{ is a (polyhedral) } \textit{face} \text{ of } g.$$

Partial order on faces:

 $f \leq g \iff f$ is a (polyhedral) face of g.

Partial order on faces:

$$f \leq g \iff f$$
 is a (polyhedral) face of g .

The maximal faces are called chambers.

 \blacktriangleright $k\mathcal{F}$ is the algebra spanned by linear combinations of elements of \mathcal{F}

$$\sum_{x \in \mathcal{F}} \lambda_x x$$

with multiplication defined using the product of \mathcal{F} .

 $\blacktriangleright k\mathcal{F}$ is the algebra spanned by linear combinations of elements of \mathcal{F}

$$\sum_{x \in \mathcal{F}} \lambda_x x$$

with multiplication defined using the product of \mathcal{F} .

 $\blacktriangleright k\mathcal{F}$ is interesting for many reasons.

 $\blacktriangleright k\mathcal{F}$ is the algebra spanned by linear combinations of elements of \mathcal{F}

$$\sum_{x \in \mathcal{F}} \lambda_x x$$

with multiplication defined using the product of \mathcal{F} .

- $\blacktriangleright k\mathcal{F}$ is interesting for many reasons.
 - ► Random Walks

 \blacktriangleright $k\mathcal{F}$ is the algebra spanned by linear combinations of elements of \mathcal{F}

$$\sum_{x \in \mathcal{F}} \lambda_x x$$

with multiplication defined using the product of \mathcal{F} .

- $\blacktriangleright k\mathcal{F}$ is interesting for many reasons.
 - ► Random Walks
 - Descent Algebra

▶ Step: Move from a chamber c to xc with probability p_x .

- ▶ Step: Move from a chamber c to xc with probability p_x .
- ➤ This encodes many well-known random walks: random-to-top shuffle; (inverse) riffle shuffle.

- ▶ Step: Move from a chamber c to xc with probability p_x .
- ► This encodes many well-known random walks: random-to-top shuffle; (inverse) riffle shuffle.
- lacktriangle Encode the probabilities p_x by an element of $k\mathcal{F}$

$$p := \sum_{x \in \mathcal{F}} p_x x.$$

- lacksquare Step: Move from a chamber c to xc with probability p_x .
- ➤ This encodes many well-known random walks: random-to-top shuffle; (inverse) riffle shuffle.
- lacktriangle Encode the probabilities p_x by an element of $k\mathcal{F}$

$$p := \sum_{x \in \mathcal{F}} p_x x.$$

► The transition matrix of the random walk is the matrix of left-multiplication by p on the ideal of chambers.

- lacksquare Step: Move from a chamber c to xc with probability p_x .
- ➤ This encodes many well-known random walks: random-to-top shuffle; (inverse) riffle shuffle.
- lacktriangle Encode the probabilities p_x by an element of $k\mathcal{F}$

$$p := \sum_{x \in \mathcal{F}} p_x x.$$

- ► The transition matrix of the random walk is the matrix of left-multiplication by p on the ideal of chambers.
- Get information about eigenvalues and multiplicities, diagonalization,

▶ Let W be a finite group generated by reflections of \mathbb{R}^n .

- Let W be a finite group generated by reflections of \mathbb{R}^n .
- ▶ Solomon (1976) defined a subalgebra of the group algebra kW called the descent algebra of W.

- ▶ Let W be a finite group generated by reflections of \mathbb{R}^n .
- Solomon (1976) defined a subalgebra of the group algebra kW called the descent algebra of W.
- Associated to W is a hyperplane arrangement $\mathcal{A}(W)$ consisting of the hyperplanes fixed by some reflection in W.

- ▶ Let W be a finite group generated by reflections of \mathbb{R}^n .
- Solomon (1976) defined a subalgebra of the group algebra kW called the descent algebra of W.
- Associated to W is a hyperplane arrangement $\mathcal{A}(W)$ consisting of the hyperplanes fixed by some reflection in W.
- ▶ Bidigare (1997) showed that the descent algebra is a subalgebra of $k\mathcal{F}$ (for the arrangement $\mathcal{A}(W)$).

The intersection lattice \mathcal{L} of \mathcal{A} is the set of all subspaces of \mathbb{R}^n arising as intersections of hyperplanes in \mathcal{A} ordered by inclusion.

The intersection lattice \mathcal{L} of \mathcal{A} is the set of all subspaces of \mathbb{R}^n arising as intersections of hyperplanes in \mathcal{A} ordered by inclusion.

The intersection lattice \mathcal{L} of \mathcal{A} is the set of all subspaces of \mathbb{R}^n arising as intersections of hyperplanes in \mathcal{A} ordered by inclusion.

Intersection of no hyperplanes.

The intersection lattice \mathcal{L} of \mathcal{A} is the set of all subspaces of \mathbb{R}^n arising as intersections of hyperplanes in \mathcal{A} ordered by inclusion.

Intersection of one hyperplane.

The intersection lattice \mathcal{L} of \mathcal{A} is the set of all subspaces of \mathbb{R}^n arising as intersections of hyperplanes in \mathcal{A} ordered by inclusion.

Intersection of at least two hyperplanes.

The intersection lattice \mathcal{L} of \mathcal{A} is the set of all subspaces of \mathbb{R}^n arising as intersections of hyperplanes in \mathcal{A} ordered by inclusion.

Order by inclusion.

The intersection lattice \mathcal{L} of \mathcal{A} is the set of all subspaces of \mathbb{R}^n arising as intersections of hyperplanes in \mathcal{A} ordered by inclusion.

Warning: Some order \mathcal{L} by reverse inclusion!

 $\mathrm{supp}:\mathcal{F}\to\mathcal{L}$ sends a face to the linear span of that face.

 supp is an order-preserving surjection of posets.

▶ supp is a semigroup homomorphism.

$$\operatorname{supp}(xy) = \operatorname{supp}(x) \vee \operatorname{supp}(y)$$

supp is a semigroup homomorphism.

$$\operatorname{supp}(xy) = \operatorname{supp}(x) \vee \operatorname{supp}(y)$$

▶ supp extends to an algebra homomorphism.

$$\mathrm{supp}: k\mathcal{F} \longrightarrow k\mathcal{L}$$

supp is a semigroup homomorphism.

$$\operatorname{supp}(xy) = \operatorname{supp}(x) \vee \operatorname{supp}(y)$$

supp extends to an algebra homomorphism.

The kernel is nilpotent.

supp is a semigroup homomorphism.

$$\operatorname{supp}(xy) = \operatorname{supp}(x) \vee \operatorname{supp}(y)$$

supp extends to an algebra homomorphism.

supp is a semigroup homomorphism.

$$\operatorname{supp}(xy) = \operatorname{supp}(x) \vee \operatorname{supp}(y)$$

supp extends to an algebra homomorphism.

▶ This implies the simple $k\mathcal{F}$ -modules are all one-dimensional.

supp is a semigroup homomorphism.

$$\operatorname{supp}(xy) = \operatorname{supp}(x) \vee \operatorname{supp}(y)$$

supp extends to an algebra homomorphism.

- ▶ This implies the simple $k\mathcal{F}$ -modules are all one-dimensional.
- ▶ Therefore, $k\mathcal{F}$ comes from a *quiver*.

ightharpoonup A quiver Q is a directed graph.

- ightharpoonup A quiver Q is a directed graph.
- ightharpoonup It gives a presentation of an algebra A whose simple modules are all one-dimensional.

- A quiver Q is a directed graph.
- ▶ It gives a presentation of an algebra A whose simple modules are all one-dimensional.
- ► There is one vertex for each idempotent in a complete system of primitive orthogonal idempotents for the algebra A.

- A quiver Q is a directed graph.
- ▶ It gives a presentation of an algebra A whose simple modules are all one-dimensional.
- ► There is one vertex for each idempotent in a complete system of primitive orthogonal idempotents for the algebra A.
 - $\quad \bullet \ e_X^2 = e_X \ \text{for all} \ X.$

- A quiver Q is a directed graph.
- ▶ It gives a presentation of an algebra A whose simple modules are all one-dimensional.
- ► There is one vertex for each idempotent in a complete system of primitive orthogonal idempotents for the algebra A.
 - $e_X^2 = e_X$ for all X.
 - $e_X e_Y = 0 \text{ if } X \neq Y.$

- A quiver Q is a directed graph.
- ▶ It gives a presentation of an algebra A whose simple modules are all one-dimensional.
- ► There is one vertex for each idempotent in a complete system of primitive orthogonal idempotents for the algebra A.
 - $e_X^2 = e_X$ for all X.
 - $e_X e_Y = 0 \text{ if } X \neq Y.$

- A quiver Q is a directed graph.
- ▶ It gives a presentation of an algebra A whose simple modules are all one-dimensional.
- ► There is one vertex for each idempotent in a complete system of primitive orthogonal idempotents for the algebra A.
 - $e_X^2 = e_X$ for all X.
 - $e_X e_Y = 0$ if $X \neq Y$.
 - $\sum_{X} e_{X} = 1.$
 - Ae_X is indecomposable.

- A quiver Q is a directed graph.
- ▶ It gives a presentation of an algebra A whose simple modules are all one-dimensional.
- ► There is one vertex for each idempotent in a complete system of primitive orthogonal idempotents for the algebra A.
 - $e_X^2 = e_X$ for all X.
 - $e_X e_Y = 0$ if $X \neq Y$.
 - $\sum_{X} e_{X} = 1.$
 - Ae_X is indecomposable.
- lacktriangle The arrows $X \to Y$ correspond to a basis of

$$e_Y \Big(\operatorname{rad}(A) / \operatorname{rad}^2(A) \Big) e_X.$$

▶ The path algebra kQ of Q is the k-vector space spanned by the paths of Q with multiplication given by composition of paths.

- ▶ The path algebra kQ of Q is the k-vector space spanned by the paths of Q with multiplication given by composition of paths.
- lacktriangledown There is a map $\varphi:kQ\to A$ sending

- ▶ The path algebra kQ of Q is the k-vector space spanned by the paths of Q with multiplication given by composition of paths.
- lacktriangle There is a map $\varphi:kQ o A$ sending
 - vertices X to idempotents e_X .

- ▶ The path algebra kQ of Q is the k-vector space spanned by the paths of Q with multiplication given by composition of paths.
- lacktriangle There is a map $\varphi:kQ o A$ sending
 - vertices X to idempotents e_X .
 - ▶ arrows $X \to Y$ to representatives of a basis for $e_Y \left(\operatorname{rad}(A)/\operatorname{rad}^2(A)\right) e_X$.

- ▶ The path algebra kQ of Q is the k-vector space spanned by the paths of Q with multiplication given by composition of paths.
- lacktriangle There is a map $\varphi:kQ o A$ sending
 - vertices X to idempotents e_X .
 - ▶ arrows $X \to Y$ to representatives of a basis for $e_Y \left(\operatorname{rad}(A)/\operatorname{rad}^2(A)\right) e_X$.
- $ightharpoonup \varphi$ is surjective.

- ▶ The path algebra kQ of Q is the k-vector space spanned by the paths of Q with multiplication given by composition of paths.
- lacktriangle There is a map $\varphi:kQ o A$ sending
 - vertices X to idempotents e_X .
 - ▶ arrows $X \to Y$ to representatives of a basis for $e_Y \left(\operatorname{rad}(A) / \operatorname{rad}^2(A) \right) e_X$.
- $ightharpoonup \varphi$ is surjective.
- ▶ So $(Q, \ker \varphi)$ is a presentation of A.

Complete System of Primitive Orthogonal Idempotents

▶ For each $X \in \mathcal{L}$ fix a face x of support X.

Complete System of Primitive Orthogonal Idempotents

- ▶ For each $X \in \mathcal{L}$ fix a face x of support X.
- ightharpoonup Define elements e_X inductively by

$$e_X = x - \sum_{Y > X} x e_Y.$$

Complete System of Primitive Orthogonal Idempotents

- ▶ For each $X \in \mathcal{L}$ fix a face x of support X.
- ightharpoonup Define elements e_X inductively by

$$e_X = x - \sum_{Y > X} x e_Y.$$

Nice property:

$$ye_X = 0 \text{ if } \operatorname{supp}(y) \not\leq X.$$

Complete System of Primitive Orthogonal Idempotents

- ▶ For each $X \in \mathcal{L}$ fix a face x of support X.
- ightharpoonup Define elements e_X inductively by

$$e_X = x - \sum_{Y > X} x e_Y.$$

Nice property:

$$ye_X = 0$$
 if $supp(y) \not\leq X$.

▶ So the quiver Q of $k\mathcal{F}$ has one vertex for each $X \in \mathcal{L}$.

Arrows

▶ The idempotents e_X correspond to isomorphism classes of simple modules S_X .

Arrows

- ▶ The idempotents e_X correspond to isomorphism classes of simple modules S_X .
- Under this correspondence,

$$\dim e_Y \Big(\operatorname{rad}(k\mathcal{F}) / \operatorname{rad}^2(k\mathcal{F}) \Big) e_X = \dim \operatorname{Ext}_{k\mathcal{F}}^1(S_X, S_Y).$$

Arrows

- ▶ The idempotents e_X correspond to isomorphism classes of simple modules S_X .
- Under this correspondence,

$$\dim e_Y \Big(\operatorname{rad}(k\mathcal{F}) / \operatorname{rad}^2(k\mathcal{F}) \Big) e_X = \dim \operatorname{Ext}_{k\mathcal{F}}^1(S_X, S_Y).$$

▶ To compute $\operatorname{Ext}_{k\mathcal{F}}^p(S_X,S_Y)$ we need a projective resolution of S_X : an exact sequence of projective $k\mathcal{F}$ -modules.

$$\cdots \longrightarrow P_i \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow S_X \longrightarrow 0$$

► Use the geometry of the arrangement.

► Use the geometry of the arrangement.

Start with the arrangement.

► Use the geometry of the arrangement.

Associated to the arrangement is a zonotope ${\cal Z}.$

► Use the geometry of the arrangement.

Associated to the arrangement is a zonotope Z.

The face poset of Z is the opposite poset of \mathcal{F} .

Augmented Cellular Chain Complex

$$\cdots \xrightarrow{\partial} k\mathcal{F}_p \xrightarrow{\partial} \cdots \xrightarrow{\partial} k\mathcal{F}_0 \xrightarrow{\chi} k \longrightarrow 0,$$

This is the augmented cellular chain complex of Z, where \mathcal{F}_p is the set of codimension p faces in \mathcal{F} .

Exactness

$$\cdots \xrightarrow{\partial} k\mathcal{F}_p \xrightarrow{\partial} \cdots \xrightarrow{\partial} k\mathcal{F}_0 \xrightarrow{\chi} k \longrightarrow 0$$

The sequence is exact because the homology of Z is trivial.

$k\mathcal{F}$ -module Structure

$$\cdots \xrightarrow{\partial} (k\mathcal{F}_p) \xrightarrow{\partial} \cdots \xrightarrow{\partial} (k\mathcal{F}_0) \xrightarrow{\chi} k \longrightarrow 0$$

▶ The vector spaces $k\mathcal{F}_p$ are $k\mathcal{F}$ -modules via the action

$$x \cdot y = \begin{cases} xy, & \text{if } \operatorname{supp}(x) \le \operatorname{supp}(y), \\ 0, & \text{if } \operatorname{supp}(x) \not\le \operatorname{supp}(y). \end{cases}$$

$k\mathcal{F}$ -module Structure

$$\cdots \xrightarrow{\partial} (k\mathcal{F}_p) \xrightarrow{\partial} \cdots \xrightarrow{\partial} (k\mathcal{F}_0) \xrightarrow{\chi} k \longrightarrow 0$$

▶ The vector spaces $k\mathcal{F}_p$ are $k\mathcal{F}$ -modules via the action

$$x \cdot y = \begin{cases} xy, & \text{if } \operatorname{supp}(x) \le \operatorname{supp}(y), \\ 0, & \text{if } \operatorname{supp}(x) \not\le \operatorname{supp}(y). \end{cases}$$

► But,

$$x\Big(ye_{\operatorname{supp}(y)}\Big) = \begin{cases} (xy)e_{\operatorname{supp}(y)}, & \text{if } \operatorname{supp}(x) \leq \operatorname{supp}(y), \\ 0, & \text{if } \operatorname{supp}(x) \not\leq \operatorname{supp}(y). \end{cases}$$

$k\mathcal{F}$ -module Structure

$$\cdots \xrightarrow{\partial} (k\mathcal{F}_p) \xrightarrow{\partial} \cdots \xrightarrow{\partial} (k\mathcal{F}_0) \xrightarrow{\chi} k \longrightarrow 0$$

▶ The vector spaces $k\mathcal{F}_p$ are $k\mathcal{F}$ -modules via the action

$$x \cdot y = \begin{cases} xy, & \text{if } \operatorname{supp}(x) \le \operatorname{supp}(y), \\ 0, & \text{if } \operatorname{supp}(x) \not\le \operatorname{supp}(y). \end{cases}$$

► But,

$$x\Big(ye_{\operatorname{supp}(y)}\Big) = \begin{cases} (xy)e_{\operatorname{supp}(y)}, & \text{if } \operatorname{supp}(x) \leq \operatorname{supp}(y), \\ 0, & \text{if } \operatorname{supp}(x) \not\leq \operatorname{supp}(y). \end{cases}$$

 $lackbox{ So } k\mathcal{F}_p ext{ is projective: } k\mathcal{F}_p \cong \bigoplus_{\dim(X)=p} k\mathcal{F}e_X.$

Boundary Morphisms

$$\cdots \xrightarrow{\bigcirc} k\mathcal{F}_p \xrightarrow{\bigcirc} \cdots \xrightarrow{\bigcirc} k\mathcal{F}_0 \xrightarrow{\chi} k \longrightarrow 0$$

With this action the boundary operators are module morphisms.

The Augmentation Map

$$\cdots \xrightarrow{\partial} k\mathcal{F}_p \xrightarrow{\partial} \cdots \xrightarrow{\partial} k\mathcal{F}_0 \xrightarrow{\chi} k \longrightarrow 0$$

▶ The augmentation χ sends a chamber $c \in \mathcal{F}_0$ to 1.

The Augmentation Map

$$\cdots \xrightarrow{\partial} k\mathcal{F}_p \xrightarrow{\partial} \cdots \xrightarrow{\partial} k\mathcal{F}_0 \xrightarrow{\chi} k \longrightarrow 0$$

- ▶ The augmentation χ sends a chamber $c \in \mathcal{F}_0$ to 1.
- ▶ If k is the simple module corresponding to $\mathbb{R}^n \in \mathcal{L}$, then χ is a $k\mathcal{F}$ -module morphism.

The Augmentation Map

$$\cdots \xrightarrow{\partial} k\mathcal{F}_p \xrightarrow{\partial} \cdots \xrightarrow{\partial} k\mathcal{F}_0 \xrightarrow{\chi} S_{\mathbb{R}^n} \longrightarrow 0$$

- ▶ The augmentation χ sends a chamber $c \in \mathcal{F}_0$ to 1.
- ▶ If k is the simple module corresponding to $\mathbb{R}^n \in \mathcal{L}$, then χ is a $k\mathcal{F}$ -module morphism.
- ▶ So we get a projective resolution of $S_{\mathbb{R}^n}$.

For the other simple modules S_X :

▶ The arrangement A cuts out an arrangement A_X in X.

- ▶ The arrangement \mathcal{A} cuts out an arrangement \mathcal{A}_X in X.
- ▶ Apply the above to the arrangement A_X .

- ▶ The arrangement \mathcal{A} cuts out an arrangement \mathcal{A}_X in X.
- lacktriangle Apply the above to the arrangement \mathcal{A}_X .
- ▶ This gives a projective resolution of a simple module over the face semigroup algebra of A_X .

- ▶ The arrangement \mathcal{A} cuts out an arrangement \mathcal{A}_X in X.
- lacktriangle Apply the above to the arrangement \mathcal{A}_X .
- ▶ This gives a projective resolution of a simple module over the face semigroup algebra of A_X .
- ▶ Using properties of the idempotents e_X this projective resolution gives a projective resolution of the simple module S_X over $k\mathcal{F}$.

The Ext Groups

► The Ext-groups are

$$\dim\left(\operatorname{Ext}_{k\mathcal{F}}^p(S_X,S_Y)\right) = \begin{cases} 1, & \text{if } \operatorname{codim}_X(Y) = p, \\ 0, & \text{otherwise.} \end{cases}$$

The Ext Groups

► The Ext-groups are

$$\dim\left(\operatorname{Ext}_{k\mathcal{F}}^p(S_X,S_Y)\right) = \begin{cases} 1, & \text{if } \operatorname{codim}_X(Y) = p, \\ 0, & \text{otherwise.} \end{cases}$$

▶ p = 1: There is exactly one arrow $X \to Y$ iff $Y \lessdot X$.

The Ext Groups

► The Ext-groups are

$$\dim\left(\operatorname{Ext}_{k\mathcal{F}}^p(S_X,S_Y)\right) = \begin{cases} 1, & \text{if } \operatorname{codim}_X(Y) = p, \\ 0, & \text{otherwise.} \end{cases}$$

- ▶ p = 1: There is exactly one arrow $X \to Y$ iff $Y \lessdot X$.
- ho p=2: There is one relation for each interval of length two; the sum of the paths of length two in that interval.

1. The quiver $\mathcal Q$ of $k\mathcal F$ coincides with the Hasse diagram of the intersection lattice $\mathcal L$ of the arrangement $\mathcal A$.

1. The quiver $\mathcal Q$ of $k\mathcal F$ coincides with the Hasse diagram of the intersection lattice $\mathcal L$ of the arrangement $\mathcal A$.

1. The quiver \mathcal{Q} of $k\mathcal{F}$ coincides with the Hasse diagram of the intersection lattice \mathcal{L} of the arrangement \mathcal{A} .

2. $k\mathcal{F}\cong k\mathcal{Q}/I$, where I is the ideal generated by the relations coming from the intervals of length two.

1. The quiver Q of $k\mathcal{F}$ coincides with the Hasse diagram of the intersection lattice \mathcal{L} of the arrangement \mathcal{A} .

2. $k\mathcal{F} \cong k\mathcal{Q}/I$, where I is the ideal generated by the relations coming from the intervals of length two.

1. The quiver Q of $k\mathcal{F}$ coincides with the Hasse diagram of the intersection lattice \mathcal{L} of the arrangement \mathcal{A} .

- 2. $k\mathcal{F} \cong k\mathcal{Q}/I$, where I is the ideal generated by the relations coming from the intervals of length two.
- 3. $k\mathcal{F}$ depends only on $\mathcal{L}!$

Koszul Algebras

 $\blacktriangleright k\mathcal{F}$ inherits the path-length grading from $k\mathcal{Q}$.

Koszul Algebras

- $\blacktriangleright k\mathcal{F}$ inherits the path-length grading from $k\mathcal{Q}$.
- ▶ There is a projective resolution of $(k\mathcal{F})_0$

$$\cdots \longrightarrow P_q \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow (k\mathcal{F})_0 \longrightarrow 0,$$

where P_q is a graded projective $k\mathcal{F}$ -module generated in degree q and the differential is degree preserving.

Koszul Algebras

- $\blacktriangleright k\mathcal{F}$ inherits the path-length grading from $k\mathcal{Q}$.
- ▶ There is a projective resolution of $(k\mathcal{F})_0$

$$\cdots \longrightarrow P_q \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow (k\mathcal{F})_0 \longrightarrow 0,$$

where P_q is a graded projective $k\mathcal{F}$ -module generated in degree q and the differential is degree preserving.

► A graded algebra satisfying the above is a Koszul algebra.

Koszul Algebras

- ▶ $k\mathcal{F}$ inherits the path-length grading from $k\mathcal{Q}$.
- ▶ There is a projective resolution of $(k\mathcal{F})_0$

$$\cdots \longrightarrow P_q \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow (k\mathcal{F})_0 \longrightarrow 0,$$

where P_q is a graded projective $k\mathcal{F}$ -module generated in degree q and the differential is degree preserving.

- ► A graded algebra satisfying the above is a Koszul algebra.
- ▶ The Koszul dual of $k\mathcal{F}$ is the incidence algebra $I(\mathcal{L}^*)$.

▶ Let W be a finite group generated by reflections of \mathbb{R}^n .

- ▶ Let W be a finite group generated by reflections of \mathbb{R}^n .
- lackbox Let $\mathcal A$ be the set of hyperplanes fixed by some reflection in W.

- ▶ Let W be a finite group generated by reflections of \mathbb{R}^n .
- lackbox Let ${\mathcal A}$ be the set of hyperplanes fixed by some reflection in W.
- lacktriangledown W acts on the faces \mathcal{F} , hence also on $k\mathcal{F}$.

- ▶ Let W be a finite group generated by reflections of \mathbb{R}^n .
- Let \mathcal{A} be the set of hyperplanes fixed by some reflection in W.
- W acts on the faces \mathcal{F} , hence also on $k\mathcal{F}$.
- ▶ Bidigare showed that the invariant subalgebra $(k\mathcal{F})^W$ is isomorphic to Solomon's descent algebra.

▶ Lift the action of W to kQ.

- ▶ Lift the action of W to kQ.
 - $\qquad \qquad \textbf{Modify } e_X \text{ slightly so that } w(e_X) = e_{w(X)}.$

- ▶ Lift the action of W to kQ.
 - ▶ Modify e_X slightly so that $w(e_X) = e_{w(X)}$.
 - $lackbox{ Define } \varphi: k\mathcal{Q}
 ightarrow k\mathcal{F} ext{ using the idempotents } \sum_w e_{w(X)}.$

- ▶ Lift the action of W to kQ.
 - ▶ Modify e_X slightly so that $w(e_X) = e_{w(X)}$.
 - ▶ Define $\varphi: k\mathcal{Q} \to k\mathcal{F}$ using the idempotents $\sum_w e_{w(X)}$.
 - ightharpoonup There is an action of W on $k\mathcal{Q}$ making φ equivariant.

- ▶ Lift the action of W to kQ.
 - ▶ Modify e_X slightly so that $w(e_X) = e_{w(X)}$.
 - ▶ Define $\varphi: k\mathcal{Q} \to k\mathcal{F}$ using the idempotents $\sum_{w} e_{w(X)}$
 - lacktriangle There is an action of W on $k\mathcal{Q}$ making φ equivariant.
- ▶ Use the W-action on $k\mathcal{Q}$ to define a quiver \mathcal{Q}^W .

- ▶ Lift the action of W to kQ.
 - ▶ Modify e_X slightly so that $w(e_X) = e_{w(X)}$.
 - ▶ Define $\varphi: k\mathcal{Q} \to k\mathcal{F}$ using the idempotents $\sum_w e_{w(X)}$
 - lacktriangle There is an action of W on $k\mathcal Q$ making arphi equivariant.
- ▶ Use the W-action on $k\mathcal{Q}$ to define a quiver \mathcal{Q}^W .

Theorem

- ▶ Lift the action of W to kQ.
 - ▶ Modify e_X slightly so that $w(e_X) = e_{w(X)}$.
 - ▶ Define $\varphi: k\mathcal{Q} \to k\mathcal{F}$ using the idempotents $\sum_w e_{w(X)}$
 - lacktriangle There is an action of W on $k\mathcal Q$ making φ equivariant.
- ▶ Use the W-action on $k\mathcal{Q}$ to define a quiver \mathcal{Q}^W .

Theorem

1. \mathcal{Q}^W is the quiver of a subalgebra of $(k\mathcal{F})^W$.

- ▶ Lift the action of W to kQ.
 - ▶ Modify e_X slightly so that $w(e_X) = e_{w(X)}$.
 - ▶ Define $\varphi: k\mathcal{Q} \to k\mathcal{F}$ using the idempotents $\sum_w e_{w(X)}$
 - lacktriangle There is an action of W on $k\mathcal Q$ making arphi equivariant.
- ▶ Use the W-action on $k\mathcal{Q}$ to define a quiver \mathcal{Q}^W .

Theorem

- 1. Q^W is the quiver of a subalgebra of $(k\mathcal{F})^W$.
- 2. If $W = S_n$, then \mathcal{Q}^{S_n} is the quiver of $(k\mathcal{F})^{S_n}$.

ightharpoonup A left regular band is a semigroup S with 1 such that

$$xyx = xy$$
 for all $x, y \in S$.

▶ A left regular band is a semigroup S with 1 such that

$$xyx = xy$$
 for all $x, y \in S$.

▶ (The face semigroup \mathcal{F} is a left regular band.)

ightharpoonup A left regular band is a semigroup S with 1 such that

$$xyx = xy$$
 for all $x, y \in S$.

- ightharpoonup (The face semigroup $\mathcal F$ is a left regular band.)
- ▶ There are a lattice L and a surjection supp : $S \rightarrow L$ such that

$$\operatorname{supp}(xy) = \operatorname{supp}(x) \vee \operatorname{supp}(y).$$

ightharpoonup A left regular band is a semigroup S with 1 such that

$$xyx = xy$$
 for all $x, y \in S$.

- ightharpoonup (The face semigroup $\mathcal F$ is a left regular band.)
- lacktriangle There are a lattice L and a surjection $\mathrm{supp}:S o L$ such that

$$\operatorname{supp}(xy) = \operatorname{supp}(x) \vee \operatorname{supp}(y).$$

▶ The semigroup algebra kS also comes from a quiver Q.

► Construct idempotents as before,

$$e_X = x - \sum_{Y > X} x e_Y.$$

► Construct idempotents as before,

$$e_X = x - \sum_{Y > X} x e_Y.$$

ightharpoonup The vertices of Q are the elements of L.

► Construct idempotents as before,

$$e_X = x - \sum_{Y > X} x e_Y.$$

- ▶ The vertices of Q are the elements of L.
- Partial order on S:

$$x \le y \iff xy = x.$$

Construct idempotents as before,

$$e_X = x - \sum_{Y > X} x e_Y.$$

- ▶ The vertices of Q are the elements of L.
- Partial order on S:

$$x \le y \iff xy = x$$
.

ightharpoonup The number of arrows from $X \to Y$ are determined as follows.

ightharpoonup Pick an element y of support Y.

- Pick an element y of support Y.
- ► Consider the sub-poset

$$\left\{ z \in S : y < z \text{ and } \operatorname{supp}(z) \le \mathbb{R}^n \right\}.$$

- ightharpoonup Pick an element y of support Y.
- ► Consider the sub-poset $\Big\{z \in S: y < z \text{ and } \operatorname{supp}(z) \leq \mathbb{R}^n\Big\}.$
- ▶ Count the number of connected components and subtract 1.

- Pick an element y of support Y.
- ▶ Consider the sub-poset $\Big\{z \in S: y < z \text{ and } \operatorname{supp}(z) \leq \mathbb{R}^n\Big\}.$
- ▶ Count the number of connected components and subtract 1.

▶ Pick an element 1 of support Y.

- Pick an element 1 of support Y.
- ► Consider the sub-poset

$$\left\{ z \in S : y < z \text{ and } \operatorname{supp}(z) \le \mathbb{R}^n \right\}.$$

- Pick an element 1 of support Y.
- ► Consider the sub-poset $\Big\{z \in S: y < z \text{ and } \operatorname{supp}(z) \leq \mathbb{R}^n\Big\}.$
- ► Count the number of connected components and subtract 1.

- Pick an element 1 of support Y.
- ► Consider the sub-poset $\Big\{z \in S: y < z \text{ and } \operatorname{supp}(z) \leq \mathbb{R}^n\Big\}.$
- ► Count the number of connected components and subtract 1.

▶ $k\mathcal{F}$ is a Koszul algebra. What does the duality between $k\mathcal{F}$ -modules and $I(\mathcal{L}^*)$ -modules gives us?

- ▶ $k\mathcal{F}$ is a Koszul algebra. What does the duality between $k\mathcal{F}$ -modules and $I(\mathcal{L}^*)$ -modules gives us?
- Determine the quiver of the descent algebra for any W. Describe the quiver relations. (Even for $W = S_n$).

- ▶ $k\mathcal{F}$ is a Koszul algebra. What does the duality between $k\mathcal{F}$ -modules and $I(\mathcal{L}^*)$ -modules gives us?
- Determine the quiver of the descent algebra for any W. Describe the quiver relations. (Even for $W = S_n$).
- ▶ Study the *twisted group algebra* $k\mathcal{F} * kW$.

- ▶ $k\mathcal{F}$ is a Koszul algebra. What does the duality between $k\mathcal{F}$ -modules and $I(\mathcal{L}^*)$ -modules gives us?
- Determine the quiver of the descent algebra for any W. Describe the quiver relations. (Even for $W = S_n$).
- ▶ Study the *twisted group algebra* $k\mathcal{F} * kW$.
- ► Characterize the (left regular) bands that give Koszul algebras.

- ▶ $k\mathcal{F}$ is a Koszul algebra. What does the duality between $k\mathcal{F}$ -modules and $I(\mathcal{L}^*)$ -modules gives us?
- ▶ Determine the quiver of the descent algebra for any W. Describe the quiver relations. (Even for $W = S_n$).
- ▶ Study the *twisted group algebra* $k\mathcal{F} * kW$.
- ► Characterize the (left regular) bands that give Koszul algebras.
- Interval Greedoids: a generalization of matroid that includes antimatroids. Develop an "oriented interval greedoid" theory.