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Hyperplane Arrangements

A hyperplane arrangement A is a finite set of hyperplanes in R".

Assumption: all hyperplanes contain 0 € R™.
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The hyperplanes dissect R™ into polyhedral sets.

The set of faces of these polyhedra are the faces of A.
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The Poset of Faces

Partial order on faces:

f<g < fisa (polyhedral) face of g.

: \\ S

The maximal faces are called chambers.
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» kF is interesting for many reasons.
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» Descent Algebra
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Random Walks

» Step: Move from a chamber ¢ to xc with probability p,.

» This encodes many well-known random walks: random-to-top
shuffle; (inverse) riffle shuffle.

» Encode the probabilities p, by an element of kF
pim Y b
zeF

» The transition matrix of the random walk is the matrix of
left-multiplication by p on the ideal of chambers.

» Get information about eigenvalues and multiplicities,
diagonalization, . ...
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The Descent Algebra

» Let W be a finite group generated by reflections of R"™.

» Solomon (1976) defined a subalgebra of the group algebra kW
called the descent algebra of W.

» Associated to W is a hyperplane arrangement A(W)
consisting of the hyperplanes fixed by some reflection in .

» Bidigare (1997) showed that the descent algebra is a
subalgebra of kF (for the arrangement A(W)).
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The Intersection Lattice £

The intersection lattice £ of A is the set of all subspaces of R”
arising as intersections of hyperplanes in A ordered by inclusion.

/\
\/

Warning: Some order L by reverse inclusion!
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The Support Map

supp : F — L sends a face to the linear span of that face.

X

supp is an order-preserving surjection of posets.



Simple kF-modules

> supp is a semigroup homomorphism.

supp(zy) = supp(z) V supp(y)



Simple kF-modules
> supp is a semigroup homomorphism.
supp(zy) = supp(z) V supp(y)
> supp extends to an algebra homomorphism.

supp : kF — kL



Simple kF-modules
> supp is a semigroup homomorphism.

supp(zy) = supp(z) V supp(y)

> supp extends to an algebra homomorphism.

@ KF — kL

The kernel is nilpotent.



Simple kF-modules
> supp is a semigroup homomorphism.
supp(zy) = supp(z) V supp(y)
> supp extends to an algebra homomorphism.
supp : kF

The kernel is nilpotent. =}

I1*

(semisimple)



Simple kF-modules

> supp is a semigroup homomorphism.

supp(zy) = supp(z) V supp(y)

> supp extends to an algebra homomorphism.

K—\SJUPP kF — k&
The kernel is nilpotent.

» This implies the simple kF-modules are all one-dimensional.

12

I1*

(semisimple)



Simple kF-modules

> supp is a semigroup homomorphism.

supp(zy) = supp(z) V supp(y)

> supp extends to an algebra homomorphism.

K—\SJUPP kF — k&
The kernel is nilpotent.

» This implies the simple kF-modules are all one-dimensional.

12

I1*

(semisimple)

» Therefore, kF comes from a quiver.
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Quivers

» A quiver () is a directed graph.

> It gives a presentation of an algebra A whose simple modules
are all one-dimensional.

» There is one vertex for each idempotent in a complete system
of primitive orthogonal idempotents for the algebra A.

e§( =ex for all X.

€X€y=0ifX75Y.

ZX ex = 1.

Aex is indecomposable.

vV vy vy

» The arrows X — Y correspond to a basis of

ey ( rad(A)/ rad? (A)) ex.
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Quivers

» The path algebra kQ of Q is the k-vector space spanned by the
paths of @ with multiplication given by composition of paths.

» There is a map ¢ : kQ) — A sending

» vertices X to idempotents ey.

» arrows X — Y to representatives of a basis for
ey (rad(A)/rad®(A))ex.

> ¢ is surjective.

> So (Q,ker ) is a presentation of A.
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Complete System of Primitive Orthogonal I[dempotents

» For each X € L fix a face x of support X.

» Define elements ex inductively by

EX =T — E Irey.

Y>X

» Nice property:
yex = 0 if supp(y) £ X.

» So the quiver O of kF has one vertex for each X € L.
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Arrows

» The idempotents ey correspond to isomorphism classes of
simple modules Sx.

» Under this correspondence,
dim ey ( rad(kF)/ rad2(/~c.7-')) ex = dim Extl-(Sy, Sy).

> To compute Ext} ~(Sx, Sy) we need a projective resolution of
Sx: an exact sequence of projective kF-modules.

-—P— - — P —PFP— Sx—0
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Constructing the Projective Resolution

» Use the geometry of the arrangement.

N
AN

Associated to the arrangement is a zonotope Z.

The face poset of Z is the opposite poset of F.



Augmented Cellular Chain Complex

0 0 0

kF, kFo —— k 0,

This is the augmented cellular chain complex of Z,
where F,, is the set of codimension p faces in F.



Exactness

0 O .0 hE X g

- — kF,

The sequence is exact because the homology of Z is trivial.
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kJF-module Structure

1%} 1} 1%}

kFy ) —X— k 0

(7
)

> The vector spaces kF, are kF-modules via the action

oy — xy, if supp(x) < supp(y),
0, if supp(z) £ supp(y).
» But,

if <
x<y€supp(y)) = (xy)esupp(y)’ I Supp(e) < supp(y),
0, if supp(z) £ supp(y).

» So kF, is projective:  kJF, = @ kFex.
dim(X)=p



Boundary Morphisms

...@kfp @, . @ kFo —— k 0

With this action the boundary operators are module morphisms.
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The Augmentation Map

kF, o —— kFo Srn
» The augmentation x sends a chamber ¢ € Fj to 1.

» If k is the simple module corresponding to R™ € L,
then x is a kF-module morphism.

» So we get a projective resolution of Sgn.
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The Projective Resolution

For the other simple modules Sx:

» The arrangement A cuts out an arrangement Ax in X.
» Apply the above to the arrangement Ax.

» This gives a projective resolution of a simple module over the
face semigroup algebra of Ax.

» Using properties of the idempotents ey this projective
resolution gives a projective resolution of the simple module
Sx over kF.
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The Ext Groups

» The Ext-groups are

1, if codimx(Y) = p,
0, otherwise.

dim (EXtZ}—(Sx,Sy)) = {
» p = 1: There is exactly one arrow X — Y iff Y < X.

» p = 2: There is one relation for each interval of length two;
the sum of the paths of length two in that interval.
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Theorem

1. The quiver Q of kF coincides with the Hasse diagram of the
intersection lattice £ of the arrangement A.

R

n RTL

y 7 Z

0 0

2. kF 2 kQ/I, where I is the ideal generated by the relations
coming from the intervals of length two.

X/Rn +
\0

3. kJF depends only on L!
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Koszul Algebras

» kJF inherits the path-length grading from k£ Q.
> There is a projective resolution of (kF)q
-— Py — -+ — P — Py — (kF)o — 0,

where P, is a graded projective kF-module generated in
degree ¢ and the differential is degree preserving.

» A graded algebra satisfying the above is a Koszul algebra.

» The Koszul dual of kF is the incidence algebra I(L*).
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Descent Algebra

v

Let W be a finite group generated by reflections of R™.

v

Let A be the set of hyperplanes fixed by some reflection in .

» W acts on the faces F, hence also on kF.

v

Bidigare showed that the invariant subalgebra (k)" is
isomorphic to Solomon’s descent algebra.
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The Quiver of the Descent Algebra

» Lift the action of W to kQ.

» Modify ex slightly so that w(ex) = e, (x)-
» Define ¢ : kQ — EkF using the idempotents > e, (x).
» There is an action of W on k£Q making ¢ equivariant.

» Use the WW-action on kQ to define a quiver Q"

Theorem

1. QW is the quiver of a subalgebra of (kF)".
2. If W =S, then Q% is the quiver of (kF)".
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Left Regular Bands

> A left regular band is a semigroup S with 1 such that
zyx =zy forall z,y € S.

» (The face semigroup F is a left regular band.)
» There are a lattice L and a surjection supp : S — L such that

supp(zy) = supp(z) V supp(y).

» The semigroup algebra kS also comes from a quiver Q.
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The Quiver of a Left Regular Band

» Construct idempotents as before,

EX =T — E Irey.

Y>X

» The vertices of () are the elements of L.
» Partial order on S:
<y <= xy==1x.

» The number of arrows from X — Y are determined as follows.
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» Pick an element 1 of support Y.

» Consider the sub-poset
{z € S:y < zand supp(z) < R”}.

» Count the number of connected components and subtract 1.
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What's Next?

» kJF is a Koszul algebra. What does the duality between
kF-modules and I(L*)-modules gives us?

» Determine the quiver of the descent algebra for any .
Describe the quiver relations. (Even for W = S,,).

» Study the twisted group algebra kF x kW .
» Characterize the (left regular) bands that give Koszul algebras.

» Interval Greedoids: a generalization of matroid that includes
antimatroids. Develop an “oriented interval greedoid” theory.



