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» The descent set of a permutation o € .5,, is

des(o) = {z Doy > UZ-+1}.
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The Descent Algebra of the Symmetric Group S,

» The descent set of a permutation o € .S, is

» An example.

des(o) = {z Doy > UZ-+1}.

o=(54,6,7,1,3,2).
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The Descent Algebra of the Symmetric Group S

» The descent set of a permutation o € .S, is

des(o) =qi:0; > UZ+1
» An example.
o=(54,6,7,1,3,2).

de% 5467,1,32 146
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The Descent Algebra of the Symmetric Group S,

» For J C [n—1]:={1,...,n}, define

XJ:ZO'

€ QS,.
des(o)CJ
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The Descent Algebra of the Symmetric Group S,
» For J C [n—1]:={1,...,n}, define
X5j= Z o

€ QS5,,.
des(o)CJ
> If n =3, then

Xpy=(1,2,3) +(2,3,1) +(1,3,2).
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The Descent Algebra of the Symmetric Group S,

» For J C [n—1]:={1,...,n}, define

XJ:ZO'

€ QS5,,.
des(o)CJ
> If n =3, then

Xpy=(1,2,3) +(2,3,1) +(1,3,2).
» The descent algebra of S, is

D(S,,) = span {XJ :JCn— 1]} C QSy.
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The Descent Algebra of the Symmetric Group S,
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The Descent Algebra of the Symmetric Group S,

» The descent algebra was originally defined by Louis Solomon in
1976 for any finite Coxeter group.
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The Descent Algebra of the Symmetric Group S,

» The descent algebra was originally defined by Louis Solomon in
1976 for any finite Coxeter group.

» Since then it has experienced much attention because of
connections to:

» the representation theory of the symmetric group;
the free Lie algebra;

»
» probability theory;
» Hochschild homology of algebras;
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The Descent Algebra of the Symmetric Group S,

» The descent algebra was originally defined by Louis Solomon in
1976 for any finite Coxeter group.

» Since then it has experienced much attention because of
connections to:

» the representation theory of the symmetric group;
the free Lie algebra;

probability theory;
Hochschild homology of algebras;
combinatorics;
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The Descent Algebra of the Symmetric Group S,

» The descent algebra was originally defined by Louis Solomon in
1976 for any finite Coxeter group.

» Since then it has experienced much attention because of
connections to:

| 4

vV vy vy VvYyy

the representation theory of the symmetric group;
the free Lie algebra;

probability theory;

Hochschild homology of algebras;

combinatorics;

hyperplane arrangements.
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The Braid Arrangement

» A hyperplane arrangement A is a finite set
hyperplanes in R"™.
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The Braid Arrangement

» A hyperplane arrangement A is a finite set of
hyperplanes in R"™.

» The braid arrangement B,, consists of the
following hyperplanes, where 1 <i < j <n.

Hij:{ﬁeR":vi:vj}C]R”.
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The Braid Arrangement for n = 3,4
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The Braid Arrangement for n = 3,4

> All the hyperplanes H;; contain the line vy = --- = v,
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The Braid Arrangement for n = 3,4

R,

> All the hyperplanes H;; contain the line v = -+ = vy,
» Intersecting B,, with v; + --- 4+ v, = 0 gives an arrangement in
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> All the hyperplanes H;; contain the line v = -+ = vy,
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The Braid Arrangement for n = 3,4

R,

> All the hyperplanes H;; contain the line v = -+ = vy,
» Intersecting B,, with v; + --- 4+ v, = 0 gives an arrangement in
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The Faces of A

> The connected components of R™\ |Jyc 4 H are polyhedra.
We call these chambers.
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The Faces of A

> The connected components of R™\ |Jc 4 H are polyhedra
We call these chambers.

» The set F of polyhedral faces of the chambers are the faces of
the arrangement A.
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The Faces of A

> The connected components of R™\ |Jyc 4 H are polyhedra.
We call these chambers.

» The set F of polyhedral faces of the chambers are the faces of
the arrangement A.

» Note: A chamber is a face!
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A Small Example
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A Small Example

b
\y
a’ i
/
Fam'A

F={z,a',y,y,a,d',b,V/,0}
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The Faces of B,,

A



The Faces of B,

» Suppose that # € R" is not on a hyperplane in B,.

DA



The Faces of B,

» Suppose that ¥ € R™ is not on a hyperplane in B,,.
» Therefore, there exists a permutation o € S,, such that

Vg < Vgy < 00 < Vg,

DA



The Faces of B,

» Suppose that ¥ € R™ is not on a hyperplane in B,,.
» Therefore, there exists a permutation o € S,, such that
Vg < Vgy <+ < Vg, -

(1)
» Hence, the chambers of B,, correspond to elements of S,,.

Voy << Vo, (017027

ceyOp)-
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The Faces of B,

» Suppose that ¥ € R™ is not on a hyperplane in B,,.
» Therefore, there exists a permutation o € S,, such that
Vg < Vgy <+ < Vg, -

(1)
» Hence, the chambers of B,, correspond to elements of S,,.

Voy << Vo, (017027

ceyOp)-
> If ¥ is on some hyperplanes H;;, then some of the inequalities
change to equalities in (1). For example,

V1 =05 <V =13 < U4
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The Faces of B,

» Suppose that ¥ € R™ is not on a hyperplane in B,,.
» Therefore, there exists a permutation o € S,, such that
Vg < Vgy <+ < Vg, -

(1)
» Hence, the chambers of B,, correspond to elements of S,,.

Voy << Vo, (017027

ceyOp)-
> If ¥ is on some hyperplanes H;;, then some of the inequalities
change to equalities in (1). For example,

V1 =5 < V2 =0V3 < Uy ({175}7 {273}7 {4})

= (15,23,4).
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Product of Faces

» If B= (Bl,BQ, ,Bm) and C = (01702,
product of B and C' is the face

.., C}), then the
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Product of Faces

» If B= (Bl,BQ, ,Bm) and C = (01702,
product of B and C' is the face

.., C}), then the
(31001, BiNCy, -+, B1NCy,
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Product of Faces

» If B= (Bl,BQ, ,Bm) and C = (01702,
product of B and C' is the face

.., C}), then the
(B1ﬂ01, BiNCy, -+, B1NCy,

) BQQCh
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Product of Faces

» If B= (B, Bs,

,Bin) and C = (Cq, Cy,
product of B and C' is the face

.., C}), then the
(B1ﬂ01, BiNCy, -+, B1NCy,
BQﬂCl, BQﬂCQ, “ BQQCh
0
Bu(C1, BuNCa, oy BuCl)
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Product of Faces

» If B= (B, Bs,

,Bin) and C = (Cq, Cy,
product of B and C' is the face

.., (), then the
<B1 NCy, BiNGCy, -+-, BiNCy,
BQﬂCl, BQﬂCQ, T BQQCh
O
Bu(C1, BuNCa, oy BuCl)
where [ means “discard empty intersections”.
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Product of Faces

» An example:

(34,256, 17)(257, 134, 6)
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» An example:

256, 17)134, 6) = (34 N 257

DA



Product of Faces

» An eXample:

256, 17)1347 6) = (@
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Product of Faces

» An eXample:

256, 17)13 46) = (
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Product of Faces

» An example:

256, 17)(2576) - (34 N134
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Product of Faces

» An example:

256, 17)(2576) - (34,
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Product of Faces
» An example:

256, 17)(257,134(6) = (34, 3416
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Product of Faces

» An example:

256, 17)(257,134(6) = (34, 0
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» An example:

256, 17)(257,134(6) = (34,
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Product of Faces

» An example:

(3417)134, 6) = (34, 256 N 257
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Product of Faces

» An eXample:

(34‘@ 17)134, 6) = (3 L,
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Product of Faces

» An eXample

ECHAC
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» An eXample

ECHAC
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Product of Faces

» An eXample

ECHAC

34 25,
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Product of Faces

» An example:

(3417)(257, 13 = (34, 25, 256 N 6
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Product of Faces

» An example:

(3417)(257, 134(6) = (34, 25, 6,
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Product of Faces

» An example:

(34, 256134, 6) = (34, 25, 6, 17 N 257
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Product of Faces

» An example:

(34, 256134, 6) = (34, 25, 6. 7,
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Product of Faces

» An example:

(34, 256@(2576) = (34, 25,6, 7, 171134

DA



Product of Faces

» An example:

(34, 256@(2576) - (34, 25,6, 7, 1,
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Product of Faces

» An example:

(34, 256@(257, 13 = (34, 25,6,7,1,17N6
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Product of Faces

» An example:

(34, 256@(257, 134(6) = (34, 25, 6,7, 1, )
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Product of Faces

» An example:

(34,256, 17)(257, 134, 6) = (34, 25, 6, 7, 1).
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Product of Faces
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Product of Faces

point in C.

» Geometrically: BC'is the face entered by moving a small
positive distance along a straight line from a point in B to a
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Product of Faces

point in C.

» Geometrically: BC'is the face entered by moving a small
positive distance along a straight line from a point in B to a

If C is a chamber, then BC is the chamber containing B that
is separated from C by the fewest number of hyperplanes.
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Product of Faces

point in C.

» Geometrically: BC'is the face entered by moving a small
positive distance along a straight line from a point in B to a
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Product of Faces

point in C.

» Geometrically: BC'is the face entered by moving a small
positive distance along a straight line from a point in B to a

CB=C

AN
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Product of Faces

point in C.

» Geometrically: BC'is the face entered by moving a small
positive distance along a straight line from a point in B to a

B

AN

This product was used by Jacques Tits to give another proof
that D(S,,) is an algebra. (In an appendix to Solomon’s 1976
paper.)
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Random Walks on Chambers

Bidigare-Hanlon-Rockmore, Brown-Diaconis, Brown
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Bidigare-Hanlon-Rockmore, Brown-Diaconis, Brown

» A step: Move from a chamber C to BC' with probability pg.
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Bidigare-Hanlon-Rockmore, Brown-Diaconis, Brown

» A step: Move from a chamber C to BC' with probability pg.

» This encodes many well-known random walks.
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Random Walks on Chambers

Bidigare-Hanlon-Rockmore, Brown-Diaconis, Brown

» A step: Move from a chamber C to BC with probability pp
» This encodes many well-known random walks.

» Random-to-Top shuffle: B

= (i, [n] — 7).

(3,1245)(1,4,5,3,2) = (3,1,4,5,2)
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Random Walks on Chambers

Bidigare-Hanlon-Rockmore, Brown-Diaconis, Brown

» A step: Move from a chamber C to BC with probability pp
» This encodes many well-known random walks.

» Random-to-Top shuffle: B = (i, [n] — 7).

(3,1245)(1,4,5,3,2) = (3,1,4,5,2).

> (Inverse) Riffle Shuffle: B = (S, [n] — 5),S C [n].

n
(24,135)(1,4,5,3,2) = (4,2,1,5,3).

DA



Random Walks on Chambers

Bidigare-Hanlon-Rockmore, Brown-Diaconis, Brown

» A step: Move from a chamber C to BC with probability pp
» This encodes many well-known random walks.

» Random-to-Top shuffle: B = (i, [n] — 7).

(3,1245)(1,4,5,3,2) = (3,1,4,5,2)

> (Inverse) Riffle Shuffle: B = (S, [n] — 5),S C [n].

n
(24,135)(1,4,5,3,2) = (4,2,1,5,3).

» Algebraic techniques give results about the random walks.
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The S,, action on the faces F
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The S,, action on the faces F

» S, can be identified with the group generated by reflections in
the hyperplanes H;; of B,,.
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The S,, action on the faces F

» S, can be identified with the group generated by reflections in
the hyperplanes H;; of B,,.

» S, acts on R™ by permuting coordinates.

U(U) = (UUUUUQ?

. 7van)'
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The S,, action on the faces F

» S, can be identified with the group generated by reflections in
the hyperplanes H;; of B,,.

» S, acts on R™ by permuting coordinates.

U(U) = (7)0171}027

.. 71)0”)_
» This induces an action of S,, on the faces of B,,.

(BB

,Bm> - (U(Bl),a(Bg),.-. ,U(Bm))
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The S,, action on the faces F

» S, can be identified with the group generated by reflections in
the hyperplanes H;; of B,,.

» S, acts on R™ by permuting coordinates.

U(U) = (7)0171}027

.. 71)0”)_
» This induces an action of S,, on the faces of B,,.

0<Bl,Bg,--- ,Bm> = (a(Bl),a(Bz),--- ,U(Bm))

» This action preserves the product.

o(BC) =o(B)o(C).
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The Face Semigroup Algebra kF
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The Face Semigroup Algebra kF

> Let k denote a field, with char(k) not dividing |.S,|.
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The Face Semigroup Algebra kF

> Let k£ denote a field, with char(k) not dividing |.S,,|
» kJF is the k-algebra spanned by elements of F,

Z Ag T

zeF

with multiplication defined using the product of F.
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The Face Semigroup Algebra kF

> Let k£ denote a field, with char(k) not dividing |.S,,|
» kJF is the k-algebra spanned by elements of F,

Z Ag T

zeF

with multiplication defined using the product of F.
» For example, if n =3,

(1,2,3) + (32,1) + 17(123) — (2,13).
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Bidigare's Theorem

A



Bidigare's Theorem

> The action of S,, extends linearly to an action on (kF)".
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> Let (kF)" denote the elements of kF invariant under the
action of S,,.
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Bidigare's Theorem

> The action of S,, extends linearly to an action on (kF)".

> Let (kF)" denote the elements of kF invariant under the
action of S,,.

» For example, the following is invariant under Ss.

(12,3) + (13,2) + (23,1).
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Bidigare's Theorem

> The action of S,, extends linearly to an action on (kF)".

> Let (kF)" denote the elements of kF invariant under the
action of S,,.

» For example, the following is invariant under Ss.
(12,3) + (13,2) + (23,1).

» Theorem. (kF)S" is anti-isomorphic to D(S,,).
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Bidigare's Theorem

> The action of S,, extends linearly to an action on (kF)".

> Let (kF)" denote the elements of kF invariant under the
action of S,,.

» For example, the following is invariant under Ss.
(12,3) + (13,2) + (23,1).
» Theorem. (kF)S" is anti-isomorphic to D(S,,).
» The isomorphism: multiply on the right by (1,2,...,n).

(12,3)
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Bidigare's Theorem

> The action of S,, extends linearly to an action on (kF)".

> Let (kF)" denote the elements of kF invariant under the
action of S,,.

» For example, the following is invariant under Ss.
(12,3) + (13,2) + (23,1).
» Theorem. (kF)S" is anti-isomorphic to D(S,,).
» The isomorphism: multiply on the right by (1,2,...,n).

(12,3) + (13,2) + (23,1)
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Bidigare's Theorem

> The action of S,, extends linearly to an action on (kF)".

> Let (kF)" denote the elements of kF invariant under the
action of S,,.

» For example, the following is invariant under Ss.
(12,3) + (13,2) + (23,1).
» Theorem. (kF)S" is anti-isomorphic to D(S,,).
» The isomorphism: multiply on the right by (1,2,...,n).

(12,3) +(13,2) +(23,1) — (1,2,3) + (1,3,2) + (2,3,1)
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Bidigare's Theorem
Proof [Brown].
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Bidigare's Theorem
Proof [Brown].

» (kF)S" acts on the vector space kC spanned by the chambers
by left-multiplication.
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Bidigare's Theorem
Proof [Brown].

» (kF)S" acts on the vector space kC spanned by the chambers
by left-multiplication.

» This induces maps kC — kC that commute with the Sj,-action.

(kF)S» — Endg, (kC)
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Bidigare's Theorem
Proof [Brown].

» (kF)S" acts on the vector space kC spanned by the chambers
by left-multiplication.

» This induces maps kC — kC that commute with the Sj,-action.

(kF)S» — Endg, (kC)
» We identified C < S,,, it holds as S,,-modules.

Endg, (kC) = Endsg, (kS,) = (kS,)%
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Bidigare's Theorem
Proof [Brown].

» (kF)S" acts on the vector space kC spanned by the chambers
by left-multiplication.

» This induces maps kC — kC that commute with the Sj,-action.
(kF)S» — Endg, (kC)
» We identified C < S,,, it holds as S,,-modules.

Endg, (kC) = Endsg, (kS,) = (kSp)%.

» The composition gives a multplication-reversing algebra
homomorphism from (kF)>» into (kS,,)°P
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The Garsia-Remmel Theorem
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The Garsia-Remmel Theorem

» Theorem. Let a, 3,y denote compositions of n. Let ¢, be
defined by X, X3 = Zﬂf CapyX~. Then cop, is the number of

matrices M whose columns sum to «, rows sum to $ and the
nonzero elements of M give .
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The Garsia-Remmel Theorem

» Theorem. Let a, 3,y denote compositions of n. Let ¢, be

defined by X, X3 = Zﬂf CapyX~. Then cop, is the number of
matrices M whose columns sum to «, rows sum to $ and the
nonzero elements of M give .

> Reason: c,gy is the number of ways of writing a face C' of
“type” v as BA where A is of “type” « and B is of “type” 3,
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The Garsia-Remmel Theorem

» Theorem. Let a, 3,y denote compositions of n. Let ¢, be

defined by X, X3 = Zﬂf CapyX~. Then cop, is the number of
matrices M whose columns sum to «, rows sum to $ and the
nonzero elements of M give .

> Reason: c,gy is the number of ways of writing a face C' of
“type” v as BA where A is of “type” « and B is of “type” 3,

» and BA is given by the nonempty elements of the matrix:

BinAy BiNAy, --- BiN4
BonA; BynNAy -+ BoNA
B,NA B,NAy --- B, NA
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The Garsia-Remmel Theorem

>

Theorem. Let «, 3,y denote compositions of n. Let c,3, be
defined by X, X3 = Zﬂf CapyX~. Then cop, is the number of
matrices M whose columns sum to «, rows sum to $ and the
nonzero elements of M give .

Reason: ¢, is the number of ways of writing a face C' of
“type” v as BA where A is of “type” « and B is of “type” 3,

and BA is given by the nonempty elements of the matrix:
|[BiNAi|l |BiNAs| -+ |BiNA
|BQﬂA1| |BQﬂA2| |B2ﬂAl|
|BmﬂA1| |BmﬂA2| |BmﬂAl|

Now take the cardinalities of the entries.
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Solomon's Theorem

» Solomon showed that D(.S,,) maps into the ring of characters
of S,.
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Solomon's Theorem

» Solomon showed that D(.S,,) maps into the ring of characters
of S,.

» This follows from the following fact about groups.
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Solomon's Theorem

» Solomon showed that D(.S,,) maps into the ring of characters
of S,.

» This follows from the following fact about groups.
» If G is a group acting on a semigroup X such that

g(zy) = g(x)g(y) and G, NGy = Gy, then there is a map
from (RX)Y into the ring of characters of G.
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The Quiver of kF

» Let A be a hyperplane arrangement. Construct a directed
graph Q as follows.
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The Quiver of kF

» Let A be a hyperplane arrangement. Construct a directed
graph Q as follows.

» One vertex for each intersection of subsets of A.
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The Quiver of kF

» Let A be a hyperplane arrangement. Construct a directed
graph Q as follows.

» One vertex for each intersection of subsets of A.

R’n

Intersection of no hyperplanes.
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The Quiver of kF

» Let A be a hyperplane arrangement. Construct a directed
graph Q as follows.

» One vertex for each intersection of subsets of A.

R’n

Intersection of one hyperplane.
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The Quiver of kF
graph Q as follows.

» Let A be a hyperplane arrangement. Construct a directed

» One vertex for each intersection of subsets of A.

R’n

0
Intersection of at least two hyperplanes.
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The Quiver of kF

» Let A be a hyperplane arrangement. Construct a directed
graph Q as follows.

» One vertex for each intersection of subsets of A

/\
\/

Order by inclusion
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The Quiver of kF

graph Q as follows.

» Let A be a hyperplane arrangement. Construct a directed

» One vertex for each intersection of subsets of A.

n

S|

AN
N\l

Draw an arrow X — Y iff X covers Y.

O <K =<=—

]
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The Quiver of kF

paths.

» The path algebra kQ of Q is the k-vector space spanned by
the paths of Q with multiplication given by composition of
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The Quiver of kF

» The path algebra kQ of Q is the k-vector space spanned by

the paths of Q with multiplication given by composition of
paths.

» Theorem [S.]. Q is the quiver of kF. There is an algebra
surjection ¢ : kQ — kJF with kernel generated by the following
, one for each interval of length two.
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The Quiver of kF

» The path algebra kQ of Q is the k-vector space spanned by

the paths of Q with multiplication given by composition of
paths.

» Theorem [S.]. Q is the quiver of kF. There is an algebra

surjection ¢ : kQ — kJF with kernel generated by the following
, one for each interval of length two.

N\

S
ANVS

O<—0=<——0
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The Quiver of kF

» The path algebra kQ of Q is the k-vector space spanned by
the paths of Q with multiplication given by composition of
paths.

» Theorem [S.]. Q is the quiver of kF. There is an algebra
surjection ¢ : kQ — kJF with kernel generated by the following
, one for each interval of length two.

VAN
N, S
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The Quiver of kF
» The path algebra kQ of Q is the k-vector space spanned by

the paths of Q with multiplication given by composition of
paths.

» Theorem [S.]. Q is the quiver of kF. There is an algebra
surjection ¢ : kQ — kJF with kernel generated by the following
, one for each interval of length two.

VAN
N, S

» Corollary. kF depends only on how the hyperplanes intersect!
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The Quiver of D(S,,)
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The Quiver of D(S),)

» We have a surjection ¢ : kQ — kF.
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The Quiver of D(S),)

» We have a surjection ¢ : kQ — kF

» Lift the action of S,, to kQ using .
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The Quiver of D(S),)
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» Lift the action of S,, to kQ using .

» The action maps paths to signed paths, preserving length.
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The Quiver of D(S),)

» We have a surjection ¢ : kQ — kF.
» Lift the action of S,, to kQ using .

» The action maps paths to signed paths, preserving length.

» Using this action, we can define a quiver Qg, :
» One vertex for each orbit of the vertices of Q.
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The Quiver of D(S),)

» We have a surjection ¢ : kQ — kF.
» Lift the action of S,, to kQ using .

» The action maps paths to signed paths, preserving length.

» Using this action, we can define a quiver Qg, :

» One vertex for each orbit of the vertices of Q.
» One arrow [X] — [Y]iff Y w(X - Y) #0.
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The Quiver of D(S),)

» Theorem [Garsia-Reutenauer|. The quiver of D(S,,) has a
vertex for each partition of n, and ¢ — p iff ¢ is obtained from
p by adding two distinct integers of p.
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The Quiver of D(S),)

» Theorem [Garsia-Reutenauer|. The quiver of D(S,,) has a
vertex for each partition of n, and ¢ — p iff ¢ is obtained from
p by adding two distinct integers of p.

/

5

\ 2111 11111
41 — 311

» The kernel of kQg, — D(S,,) is not well understood.

32 —=221
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ldempotents in D(.S,,).

» Much interest exists in constructing idempotents in D(S,,), for
applications and to understand the structure of D(S,,). Several
families of idempotents have been constructed

(Garsia-Reutenauer, Bergeron-Bergeron-Howlett-Taylor,
Diaconis-Bayer).
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ldempotents in D(.S,,).

» Much interest exists in constructing idempotents in D(S,,), for
applications and to understand the structure of D(S,,). Several
families of idempotents have been constructed
(Garsia-Reutenauer, Bergeron-Bergeron-Howlett-Taylor,
Diaconis-Bayer).

» [S.] There is a nice construction of idempotents in kF. These
give idempotents in D(S,,).
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Connections with the Free Lie Algebra

» Let Lie, denote the 1™ homogeneous component of the free
Lie algebra on n elements. Then, as S,,-modules, Lie,, is

isomorphic to the vector space spanned by the maximal paths
in £KQ modulo the relations.
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Connections with the Free Lie Algebra

» Let Lie, denote the 1™ homogeneous component of the free
Lie algebra on n elements. Then, as S,,-modules, Lie,, is
isomorphic to the vector space spanned by the maximal paths
in £KQ modulo the relations.

» This connection is via poset cohomology. The cohomology of
the lattice of set partitions of [n] is an S,,-module. Tensoring
with the sign representation gives both of the above.
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> kF is a Koszul algebra. Its Koszul dual is the incidence algebra
of the intersection lattice of A. What does this duality
between the modules give us?
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Coxeter groups. Describe the quiver relations. (Even for S,,).

» Study the twisted (or skew) group algebra kF * kS,,.
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> kF is a Koszul algebra. Its Koszul dual is the incidence algebra
of the intersection lattice of A. What does this duality
between the modules give us?

» Determine the quiver of the descent algebra for other finite
Coxeter groups. Describe the quiver relations. (Even for S,,).

» Study the twisted (or skew) group algebra kF * kS,,.

» F is an example of a semigroup called a left regular band.
Characterize the left regular bands that give Koszul algebras.
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What's Next?

> kF is a Koszul algebra. Its Koszul dual is the incidence algebra
of the intersection lattice of A. What does this duality
between the modules give us?

» Determine the quiver of the descent algebra for other finite
Coxeter groups. Describe the quiver relations. (Even for S,,).

» Study the twisted (or skew) group algebra kF * kS,,.

» F is an example of a semigroup called a left regular band.
Characterize the left regular bands that give Koszul algebras.

» Interval Greedoids: a generalization of matroid. Develop an
“oriented interval greedoid” theory abstracting the theory of
oriented matroids.
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