The Descent Algebra, Geometrically

Franco V Saliola saliola@gmail.com

LaCIM, UQÀM

13 October 2006

The Descent Algebra of the Symmetric Group S_{n}

The Descent Algebra of the Symmetric Group S_{n}

- The descent set of a permutation $\sigma \in S_{n}$ is

$$
\operatorname{des}(\sigma)=\left\{i: \sigma_{i}>\sigma_{i+1}\right\} .
$$

The Descent Algebra of the Symmetric Group S_{n}

- The descent set of a permutation $\sigma \in S_{n}$ is

$$
\operatorname{des}(\sigma)=\left\{i: \sigma_{i}>\sigma_{i+1}\right\} .
$$

- An example.

The Descent Algebra of the Symmetric Group S_{n}

- The descent set of a permutation $\sigma \in S_{n}$ is

$$
\operatorname{des}(\sigma)=\left\{i: \sigma_{i}>\sigma_{i+1}\right\} .
$$

- An example.

$$
\begin{gathered}
\sigma=(5,4,6,7,1,3,2) \\
\operatorname{des}(5,4,6,7,1,3,2)=\{1,4,6\} .
\end{gathered}
$$

The Descent Algebra of the Symmetric Group S_{n}

The Descent Algebra of the Symmetric Group S_{n}

- For $J \subset[n-1]:=\{1, \ldots, n\}$, define

$$
X_{J}=\sum_{\operatorname{des}(\sigma) \subseteq J} \sigma \quad \in \mathbb{Q} S_{n}
$$

The Descent Algebra of the Symmetric Group S_{n}

- For $J \subset[n-1]:=\{1, \ldots, n\}$, define

$$
X_{J}=\sum_{\operatorname{des}(\sigma) \subseteq J} \sigma \in \mathbb{Q} S_{n} .
$$

- If $n=3$, then

$$
X_{\{2\}}=(1,2,3)+(2,3,1)+(1,3,2) .
$$

$$
\therefore \quad \theta \quad \equiv \text { ज ac }
$$

The Descent Algebra of the Symmetric Group S_{n}

- For $J \subset[n-1]:=\{1, \ldots, n\}$, define

$$
X_{J}=\sum_{\operatorname{des}(\sigma) \subseteq J} \sigma \in \mathbb{Q} S_{n} .
$$

- If $n=3$, then

$$
X_{\{2\}}=(1,2,3)+(2,3,1)+(1,3,2)
$$

- The descent algebra of S_{n} is

$$
\mathcal{D}\left(S_{n}\right)=\operatorname{span}\left\{X_{J}: J \subseteq[n-1]\right\} \subset \mathbb{Q} S_{n}
$$

The Descent Algebra of the Symmetric Group S_{n}

The Descent Algebra of the Symmetric Group S_{n}

- The descent algebra was originally defined by Louis Solomon in 1976 for any finite Coxeter group.

The Descent Algebra of the Symmetric Group S_{n}

- The descent algebra was originally defined by Louis Solomon in 1976 for any finite Coxeter group.
- Since then it has experienced much attention because of connections to:

The Descent Algebra of the Symmetric Group S_{n}

- The descent algebra was originally defined by Louis Solomon in 1976 for any finite Coxeter group.
- Since then it has experienced much attention because of connections to:
- the representation theory of the symmetric group;

The Descent Algebra of the Symmetric Group S_{n}

- The descent algebra was originally defined by Louis Solomon in 1976 for any finite Coxeter group.
- Since then it has experienced much attention because of connections to:
- the representation theory of the symmetric group;
- the free Lie algebra;

The Descent Algebra of the Symmetric Group S_{n}

- The descent algebra was originally defined by Louis Solomon in 1976 for any finite Coxeter group.
- Since then it has experienced much attention because of connections to:
- the representation theory of the symmetric group;
- the free Lie algebra;
- probability theory;

The Descent Algebra of the Symmetric Group S_{n}

- The descent algebra was originally defined by Louis Solomon in 1976 for any finite Coxeter group.
- Since then it has experienced much attention because of connections to:
- the representation theory of the symmetric group;
- the free Lie algebra;
- probability theory;
- Hochschild homology of algebras;

The Descent Algebra of the Symmetric Group S_{n}

- The descent algebra was originally defined by Louis Solomon in 1976 for any finite Coxeter group.
- Since then it has experienced much attention because of connections to:
- the representation theory of the symmetric group;
- the free Lie algebra;
- probability theory;
- Hochschild homology of algebras;
- combinatorics;

The Descent Algebra of the Symmetric Group S_{n}

- The descent algebra was originally defined by Louis Solomon in 1976 for any finite Coxeter group.
- Since then it has experienced much attention because of connections to:
- the representation theory of the symmetric group;
- the free Lie algebra;
- probability theory;
- Hochschild homology of algebras;
- combinatorics;
- hyperplane arrangements.

The Braid Arrangement

The Braid Arrangement

- A hyperplane arrangement \mathcal{A} is a finite set of hyperplanes in \mathbb{R}^{n}.

The Braid Arrangement

- A hyperplane arrangement \mathcal{A} is a finite set of hyperplanes in \mathbb{R}^{n}.
- The braid arrangement \mathcal{B}_{n} consists of the following hyperplanes, where $1 \leq i<j \leq n$.

$$
H_{i j}=\left\{\vec{v} \in \mathbb{R}^{n}: v_{i}=v_{j}\right\} \subset \mathbb{R}^{n}
$$

The Braid Arrangement for $n=3,4$

The Braid Arrangement for $n=3,4$

- All the hyperplanes $H_{i j}$ contain the line $v_{1}=\cdots=v_{n}$.

The Braid Arrangement for $n=3,4$

- All the hyperplanes $H_{i j}$ contain the line $v_{1}=\cdots=v_{n}$.
- Intersecting \mathcal{B}_{n} with $v_{1}+\cdots+v_{n}=0$ gives an arrangement in \mathbb{R}^{n-1}

The Braid Arrangement for $n=3,4$

- All the hyperplanes $H_{i j}$ contain the line $v_{1}=\cdots=v_{n}$.
- Intersecting \mathcal{B}_{n} with $v_{1}+\cdots+v_{n}=0$ gives an arrangement in \mathbb{R}^{n-1}

The Braid Arrangement for $n=3,4$

－All the hyperplanes $H_{i j}$ contain the line $v_{1}=\cdots=v_{n}$ ．
－Intersecting \mathcal{B}_{n} with $v_{1}+\cdots+v_{n}=0$ gives an arrangement in \mathbb{R}^{n-1} ．

The Faces of \mathcal{A}

- 可 三 ミ 引のく

The Faces of \mathcal{A}

- The connected components of $\mathbb{R}^{n} \backslash \bigcup_{H \in \mathcal{A}} H$ are polyhedra. We call these chambers.

[^0]
The Faces of \mathcal{A}

- The connected components of $\mathbb{R}^{n} \backslash \bigcup_{H \in \mathcal{A}} H$ are polyhedra. We call these chambers.

- The set \mathcal{F} of polyhedral faces of the chambers are the faces of the arrangement \mathcal{A}.

The Faces of \mathcal{A}

- The connected components of $\mathbb{R}^{n} \backslash \bigcup_{H \in \mathcal{A}} H$ are polyhedra. We call these chambers.

- The set \mathcal{F} of polyhedral faces of the chambers are the faces of the arrangement \mathcal{A}.
- Note: A chamber is a face!

A Small Example

A Small Example

$$
\mathcal{F}=\left\{x, x^{\prime}, y, y^{\prime}, a, a^{\prime}, b, b^{\prime}, \overrightarrow{0}\right\} .
$$

ロ 可 三 ミ 引のく

The Faces of \mathcal{B}_{n}

The Faces of \mathcal{B}_{n}

- Suppose that $\vec{v} \in \mathbb{R}^{n}$ is not on a hyperplane in \mathcal{B}_{n}.

The Faces of \mathcal{B}_{n}

- Suppose that $\vec{v} \in \mathbb{R}^{n}$ is not on a hyperplane in \mathcal{B}_{n}.
- Therefore, there exists a permutation $\sigma \in S_{n}$ such that

$$
\begin{equation*}
v_{\sigma_{1}}<v_{\sigma_{2}}<\cdots<v_{\sigma_{n}} \tag{1}
\end{equation*}
$$

The Faces of \mathcal{B}_{n}

- Suppose that $\vec{v} \in \mathbb{R}^{n}$ is not on a hyperplane in \mathcal{B}_{n}.
- Therefore, there exists a permutation $\sigma \in S_{n}$ such that

$$
\begin{equation*}
v_{\sigma_{1}}<v_{\sigma_{2}}<\cdots<v_{\sigma_{n}} \tag{1}
\end{equation*}
$$

- Hence, the chambers of \mathcal{B}_{n} correspond to elements of S_{n}.

$$
v_{\sigma_{1}}<\cdots<v_{\sigma_{n}} \longleftrightarrow\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)
$$

The Faces of \mathcal{B}_{n}

- Suppose that $\vec{v} \in \mathbb{R}^{n}$ is not on a hyperplane in \mathcal{B}_{n}.
- Therefore, there exists a permutation $\sigma \in S_{n}$ such that

$$
\begin{equation*}
v_{\sigma_{1}}<v_{\sigma_{2}}<\cdots<v_{\sigma_{n}} \tag{1}
\end{equation*}
$$

- Hence, the chambers of \mathcal{B}_{n} correspond to elements of S_{n}.

$$
v_{\sigma_{1}}<\cdots<v_{\sigma_{n}} \longleftrightarrow\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right) .
$$

- If \vec{v} is on some hyperplanes $H_{i j}$, then some of the inequalities change to equalities in (1). For example,

$$
v_{1}=v_{5}<v_{2}=v_{3}<v_{4}
$$

The Faces of \mathcal{B}_{n}

- Suppose that $\vec{v} \in \mathbb{R}^{n}$ is not on a hyperplane in \mathcal{B}_{n}.
- Therefore, there exists a permutation $\sigma \in S_{n}$ such that

$$
\begin{equation*}
v_{\sigma_{1}}<v_{\sigma_{2}}<\cdots<v_{\sigma_{n}} \tag{1}
\end{equation*}
$$

- Hence, the chambers of \mathcal{B}_{n} correspond to elements of S_{n}.

$$
v_{\sigma_{1}}<\cdots<v_{\sigma_{n}} \longleftrightarrow\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right) .
$$

- If \vec{v} is on some hyperplanes $H_{i j}$, then some of the inequalities change to equalities in (1). For example,

$$
\begin{array}{r}
v_{1}=v_{5}<v_{2}=v_{3}<v_{4} \longleftrightarrow(\{1,5\},\{2,3\},\{4\}) \\
=(15,23,4) .
\end{array}
$$

Product of Faces
ロ 司 三 ミ 引 引のく

Product of Faces

- If $B=\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ and $C=\left(C_{1}, C_{2}, \ldots, C_{l}\right)$, then the product of B and C is the face

Product of Faces

- If $B=\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ and $C=\left(C_{1}, C_{2}, \ldots, C_{l}\right)$, then the product of B and C is the face

$$
\left(B_{1} \cap C_{1}, B_{1} \cap C_{2}, \cdots, B_{1} \cap C_{l}\right.
$$

$$
\therefore \quad \theta \quad=\text { झ ac }
$$

Product of Faces

- If $B=\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ and $C=\left(C_{1}, C_{2}, \ldots, C_{l}\right)$, then the product of B and C is the face

$$
\begin{gathered}
\left(B_{1} \cap C_{1}, \quad B_{1} \cap C_{2}, \cdots, \quad B_{1} \cap C_{l}\right. \\
B_{2} \cap C_{1}, \quad B_{2} \cap C_{2}, \cdots, \quad B_{2} \cap C_{l},
\end{gathered}
$$

$$
\therefore \quad \mathrm{B} \quad \equiv \mathrm{~B} \text { ac }
$$

Product of Faces

- If $B=\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ and $C=\left(C_{1}, C_{2}, \ldots, C_{l}\right)$, then the product of B and C is the face

$$
\begin{gathered}
\left(B_{1} \cap C_{1}, B_{1} \cap C_{2}, \cdots, B_{1} \cap C_{l}\right. \\
B_{2} \cap C_{1}, B_{2} \cap C_{2}, \cdots, B_{2} \cap C_{l} \\
\vdots \\
\left.B_{m} \cap C_{1}, B_{m} \cap C_{2}, \cdots, B_{m} \cap C_{l}\right)^{8 s}
\end{gathered}
$$

$$
\therefore 0 \quad \equiv \equiv \text { ac }
$$

Product of Faces

- If $B=\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ and $C=\left(C_{1}, C_{2}, \ldots, C_{l}\right)$, then the product of B and C is the face

$$
\begin{gathered}
\left(B_{1} \cap C_{1}, B_{1} \cap C_{2}, \cdots, B_{1} \cap C_{l}\right. \\
B_{2} \cap C_{1}, B_{2} \cap C_{2}, \cdots, B_{2} \cap C_{l} \\
\vdots \\
\left.B_{m} \cap C_{1}, B_{m} \cap C_{2}, \cdots, B_{m} \cap C_{l}\right)^{b 8}
\end{gathered}
$$

where means "discard empty intersections".

Product of Faces
ロ 司 三 ミ 引 引のく

Product of Faces

- An example:
$(34,256,17)(257,134,6)$

Product of Faces

- An example:
(34.) 256,17$)(257,134,6)=(34 \cap 257$

Product of Faces

- An example:
(34.) 256,17$)(257,134,6)=(\emptyset$

Product of Faces

－An example：
（34．） 256,17$)(257,134,6)=($
ロ 司 三 ミ 引 引のく

Product of Faces

- An example:
(34) 256,17$)(257$ 134. 6$)=(34 \cap 134$

Product of Faces

- An example:
(34.) 256,17$)(257(134.6)=(34$,

Product of Faces

- An example:
(34.) 256,17$)(257,134.6)=(34,34 \cap 6$

Product of Faces

－An example：
（34．） 256,17$)(257,134.6)=(34, \emptyset$
ロ 司 三 ミ 引 引のく

Product of Faces

- An example:
(34.) 256,17$)(257,134$ 6 6$)=(34$,

Product of Faces

- An example:
$(34 \Omega 17)(257,134,6)=(34,256 \cap 257$

Product of Faces

- An example:
$(34 \Omega 17)(257,134,6)=(34,25$,

Product of Faces

- An example:
$(34$ 256. 17$)(257$ 134. 6$)=(34,25,256 \cap 134$

Product of Faces

－An example：
$(34$ 256． 17$)(257,134) 6.)=(34,25, \emptyset$
ロ 司 三 ミ 引 引のく

Product of Faces

- An example:
$(34 \bigcirc 17)(257 \Omega 6)=(34,25$,

Product of Faces

- An example:
$(34 \bigcirc 17)(257,134 \bigodot 6)=(34,25,256 \cap 6$

Product of Faces

- An example:
$(34 \bigcirc 17)(257,134.6)=(34,25,6$,

Product of Faces

- An example:
$(34,256$ 17)(257, 134,6$)=(34,25,6,17 \cap 257$

Product of Faces

- An example:
$(34,256 \bigcirc 17)(257,134,6)=(34,25,6,7$,

Product of Faces

- An example:
$(34,256$ 17) $(257 \bigcirc 134.6)=(34,25,6,7,17 \cap 134$

Product of Faces

- An example:
$(34,256 \overparen{17})(257(134,6)=(34,25,6,7,1$,

Product of Faces

- An example:

$$
(34,256 \overparen{17})(257,134 \overparen{6})=(34,25,6,7,1,17 \cap 6
$$

Product of Faces

- An example:

$$
(34,2 5 6 \longdiv { 1 7 })(257,134 \overparen{6})=(34,25,6,7,1, \emptyset
$$

Product of Faces

- An example:

$$
(34,256,17)(257,134,6)=(34,25,6,7,1)
$$

$$
\therefore \quad \mathrm{a}=\mathrm{\equiv} \text { ac }
$$

Product of Faces
ロ 司 三 ミ 引 引のく

Product of Faces

- Geometrically: $B C$ is the face entered by moving a small positive distance along a straight line from a point in B to a point in C.

Product of Faces

- Geometrically: $B C$ is the face entered by moving a small positive distance along a straight line from a point in B to a point in C.

Product of Faces

- Geometrically: $B C$ is the face entered by moving a small positive distance along a straight line from a point in B to a point in C.

Product of Faces

- Geometrically: $B C$ is the face entered by moving a small positive distance along a straight line from a point in B to a point in C.

If C is a chamber, then $B C$ is the chamber containing B that is separated from C by the fewest number of hyperplanes.

Product of Faces

- Geometrically: $B C$ is the face entered by moving a small positive distance along a straight line from a point in B to a point in C.

Product of Faces

- Geometrically: $B C$ is the face entered by moving a small positive distance along a straight line from a point in B to a point in C.

Product of Faces

- Geometrically: $B C$ is the face entered by moving a small positive distance along a straight line from a point in B to a point in C.

This product was used by Jacques Tits to give another proof that $\mathcal{D}\left(S_{n}\right)$ is an algebra. (In an appendix to Solomon's 1976 paper.)

Random Walks on Chambers

Bidigare-Hanlon-Rockmore, Brown-Diaconis, Brown

Random Walks on Chambers

Bidigare-Hanlon-Rockmore, Brown-Diaconis, Brown

- A step: Move from a chamber C to $B C$ with probability p_{B}.

Random Walks on Chambers

Bidigare-Hanlon-Rockmore, Brown-Diaconis, Brown

- A step: Move from a chamber C to $B C$ with probability p_{B}.
- This encodes many well-known random walks.

Random Walks on Chambers

Bidigare-Hanlon-Rockmore, Brown-Diaconis, Brown

- A step: Move from a chamber C to $B C$ with probability p_{B}.
- This encodes many well-known random walks.
- Random-to-Top shuffle: $B=(i,[n]-i)$.

$$
(3,1245)(1,4,5,3,2)=(3,1,4,5,2)
$$

Random Walks on Chambers

Bidigare-Hanlon-Rockmore, Brown-Diaconis, Brown

- A step: Move from a chamber C to $B C$ with probability p_{B}.
- This encodes many well-known random walks.
- Random-to-Top shuffle: $B=(i,[n]-i)$.

$$
(3,1245)(1,4,5,3,2)=(3,1,4,5,2)
$$

- (Inverse) Riffle Shuffle: $B=(S,[n]-S), S \subset[n]$.

$$
(24,135)(1,4,5,3,2)=(4,2,1,5,3)
$$

Random Walks on Chambers

Bidigare-Hanlon-Rockmore, Brown-Diaconis, Brown

- A step: Move from a chamber C to $B C$ with probability p_{B}.
- This encodes many well-known random walks.
- Random-to-Top shuffle: $B=(i,[n]-i)$.

$$
(3,1245)(1,4,5,3,2)=(3,1,4,5,2)
$$

- (Inverse) Riffle Shuffle: $B=(S,[n]-S), S \subset[n]$.

$$
(24,135)(1,4,5,3,2)=(4,2,1,5,3)
$$

- Algebraic techniques give results about the random walks.

The S_{n} action on the faces \mathcal{F}

The S_{n} action on the faces \mathcal{F}

- S_{n} can be identified with the group generated by reflections in the hyperplanes $H_{i j}$ of \mathcal{B}_{n}.

The S_{n} action on the faces \mathcal{F}

- S_{n} can be identified with the group generated by reflections in the hyperplanes $H_{i j}$ of \mathcal{B}_{n}.
- S_{n} acts on \mathbb{R}^{n} by permuting coordinates.

$$
\sigma(\vec{v})=\left(v_{\sigma_{1}}, v_{\sigma_{2}}, \cdots, v_{\sigma_{n}}\right)
$$

The S_{n} action on the faces \mathcal{F}

- S_{n} can be identified with the group generated by reflections in the hyperplanes $H_{i j}$ of \mathcal{B}_{n}.
- S_{n} acts on \mathbb{R}^{n} by permuting coordinates.

$$
\sigma(\vec{v})=\left(v_{\sigma_{1}}, v_{\sigma_{2}}, \cdots, v_{\sigma_{n}}\right)
$$

- This induces an action of S_{n} on the faces of \mathcal{B}_{n}.

$$
\sigma\left(B_{1}, B_{2}, \cdots, B_{m}\right)=\left(\sigma\left(B_{1}\right), \sigma\left(B_{2}\right), \cdots, \sigma\left(B_{m}\right)\right)
$$

The S_{n} action on the faces \mathcal{F}

- S_{n} can be identified with the group generated by reflections in the hyperplanes $H_{i j}$ of \mathcal{B}_{n}.
- S_{n} acts on \mathbb{R}^{n} by permuting coordinates.

$$
\sigma(\vec{v})=\left(v_{\sigma_{1}}, v_{\sigma_{2}}, \cdots, v_{\sigma_{n}}\right)
$$

- This induces an action of S_{n} on the faces of \mathcal{B}_{n}.

$$
\sigma\left(B_{1}, B_{2}, \cdots, B_{m}\right)=\left(\sigma\left(B_{1}\right), \sigma\left(B_{2}\right), \cdots, \sigma\left(B_{m}\right)\right)
$$

- This action preserves the product.

$$
\sigma(B C)=\sigma(B) \sigma(C)
$$

The Face Semigroup Algebra $k \mathcal{F}$

The Face Semigroup Algebra $k \mathcal{F}$

- Let k denote a field, with $\operatorname{char}(k)$ not dividing $\left|S_{n}\right|$.

The Face Semigroup Algebra $k \mathcal{F}$

- Let k denote a field, with $\operatorname{char}(k)$ not dividing $\left|S_{n}\right|$.
- $k \mathcal{F}$ is the k-algebra spanned by elements of \mathcal{F},

$$
\sum_{x \in \mathcal{F}} \lambda_{x} x
$$

with multiplication defined using the product of \mathcal{F}.

The Face Semigroup Algebra $k \mathcal{F}$

- Let k denote a field, with $\operatorname{char}(k)$ not dividing $\left|S_{n}\right|$.
- $k \mathcal{F}$ is the k-algebra spanned by elements of \mathcal{F},

$$
\sum_{x \in \mathcal{F}} \lambda_{x} x
$$

with multiplication defined using the product of \mathcal{F}.

- For example, if $n=3$,

$$
(1,2,3)+(32,1)+17(123)-(2,13) .
$$

Bidigare's Theorem

Bidigare's Theorem

- The action of S_{n} extends linearly to an action on $(k \mathcal{F})^{S_{n}}$.

Bidigare's Theorem

- The action of S_{n} extends linearly to an action on $(k \mathcal{F})^{S_{n}}$.
- Let $(k \mathcal{F})^{S_{n}}$ denote the elements of $k \mathcal{F}$ invariant under the action of S_{n}.

Bidigare's Theorem

- The action of S_{n} extends linearly to an action on $(k \mathcal{F})^{S_{n}}$.
- Let $(k \mathcal{F})^{S_{n}}$ denote the elements of $k \mathcal{F}$ invariant under the action of S_{n}.
- For example, the following is invariant under S_{3}.

$$
(12,3)+(13,2)+(23,1)
$$

Bidigare's Theorem

- The action of S_{n} extends linearly to an action on $(k \mathcal{F})^{S_{n}}$.
- Let $(k \mathcal{F})^{S_{n}}$ denote the elements of $k \mathcal{F}$ invariant under the action of S_{n}.
- For example, the following is invariant under S_{3}.

$$
(12,3)+(13,2)+(23,1)
$$

- Theorem. $(k \mathcal{F})^{S_{n}}$ is anti-isomorphic to $\mathcal{D}\left(S_{n}\right)$.

Bidigare's Theorem

- The action of S_{n} extends linearly to an action on $(k \mathcal{F})^{S_{n}}$.
- Let $(k \mathcal{F})^{S_{n}}$ denote the elements of $k \mathcal{F}$ invariant under the action of S_{n}.
- For example, the following is invariant under S_{3}.

$$
(12,3)+(13,2)+(23,1)
$$

- Theorem. $(k \mathcal{F})^{S_{n}}$ is anti-isomorphic to $\mathcal{D}\left(S_{n}\right)$.
- The isomorphism: multiply on the right by $(1,2, \ldots, n)$.
$(12,3)$

Bidigare's Theorem

- The action of S_{n} extends linearly to an action on $(k \mathcal{F})^{S_{n}}$.
- Let $(k \mathcal{F})^{S_{n}}$ denote the elements of $k \mathcal{F}$ invariant under the action of S_{n}.
- For example, the following is invariant under S_{3}.

$$
(12,3)+(13,2)+(23,1)
$$

- Theorem. $(k \mathcal{F})^{S_{n}}$ is anti-isomorphic to $\mathcal{D}\left(S_{n}\right)$.
- The isomorphism: multiply on the right by $(1,2, \ldots, n)$.

$$
(12,3)+(13,2)+(23,1)
$$

Bidigare's Theorem

- The action of S_{n} extends linearly to an action on $(k \mathcal{F})^{S_{n}}$.
- Let $(k \mathcal{F})^{S_{n}}$ denote the elements of $k \mathcal{F}$ invariant under the action of S_{n}.
- For example, the following is invariant under S_{3}.

$$
(12,3)+(13,2)+(23,1)
$$

- Theorem. $(k \mathcal{F})^{S_{n}}$ is anti-isomorphic to $\mathcal{D}\left(S_{n}\right)$.
- The isomorphism: multiply on the right by $(1,2, \ldots, n)$.

$$
\begin{aligned}
(12,3)+(13,2)+(23,1) \mapsto(1,2,3) & +(1,3,2)+(2,3,1) \\
& =X_{\{2\}}
\end{aligned}
$$

Bidigare's Theorem
Proof [Brown].

Bidigare's Theorem

Proof [Brown].

- $(k \mathcal{F})^{S_{n}}$ acts on the vector space $k \mathcal{C}$ spanned by the chambers by left-multiplication.

Bidigare's Theorem

Proof [Brown].

- $(k \mathcal{F})^{S_{n}}$ acts on the vector space $k \mathcal{C}$ spanned by the chambers by left-multiplication.
- This induces maps $k \mathcal{C} \rightarrow k \mathcal{C}$ that commute with the S_{n}-action.

$$
(k \mathcal{F})^{S_{n}} \rightarrow \operatorname{End}_{S_{n}}(k \mathcal{C})
$$

Bidigare's Theorem
 Proof [Brown].

- $(k \mathcal{F})^{S_{n}}$ acts on the vector space $k \mathcal{C}$ spanned by the chambers by left-multiplication.
- This induces maps $k \mathcal{C} \rightarrow k \mathcal{C}$ that commute with the S_{n}-action.

$$
(k \mathcal{F})^{S_{n}} \rightarrow \operatorname{End}_{S_{n}}(k \mathcal{C})
$$

- We identified $\mathcal{C} \leftrightarrow S_{n}$, it holds as S_{n}-modules.

$$
\operatorname{End}_{S_{n}}(k \mathcal{C})=\operatorname{End}_{S_{n}}\left(k S_{n}\right) \stackrel{\cong}{\rightrightarrows}\left(k S_{n}\right)^{o p} .
$$

Bidigare's Theorem
 Proof [Brown].

- $(k \mathcal{F})^{S_{n}}$ acts on the vector space $k \mathcal{C}$ spanned by the chambers by left-multiplication.
- This induces maps $k \mathcal{C} \rightarrow k \mathcal{C}$ that commute with the S_{n}-action.

$$
(k \mathcal{F})^{S_{n}} \rightarrow \operatorname{End}_{S_{n}}(k \mathcal{C})
$$

- We identified $\mathcal{C} \leftrightarrow S_{n}$, it holds as S_{n}-modules.

$$
\operatorname{End}_{S_{n}}(k \mathcal{C})=\operatorname{End}_{S_{n}}\left(k S_{n}\right) \stackrel{\cong}{\rightrightarrows}\left(k S_{n}\right)^{o p} .
$$

- The composition gives a multplication-reversing algebra homomorphism from $(k \mathcal{F})^{S_{n}}$ into $\left(k S_{n}\right)^{o p}$.

The Garsia-Remmel Theorem

The Garsia-Remmel Theorem

- Theorem. Let α, β, γ denote compositions of n. Let $c_{\alpha \beta \gamma}$ be defined by $X_{\alpha} X_{\beta}=\sum_{\gamma} c_{\alpha \beta \gamma} X_{\gamma}$. Then $c_{\alpha \beta \gamma}$ is the number of matrices M whose columns sum to α, rows sum to β and the nonzero elements of M give γ.

The Garsia-Remmel Theorem

- Theorem. Let α, β, γ denote compositions of n. Let $c_{\alpha \beta \gamma}$ be defined by $X_{\alpha} X_{\beta}=\sum_{\gamma} c_{\alpha \beta \gamma} X_{\gamma}$. Then $c_{\alpha \beta \gamma}$ is the number of matrices M whose columns sum to α, rows sum to β and the nonzero elements of M give γ.
- Reason: $c_{\alpha \beta \gamma}$ is the number of ways of writing a face C of "type" γ as $B A$ where A is of "type" α and B is of "type" β,

The Garsia-Remmel Theorem

- Theorem. Let α, β, γ denote compositions of n. Let $c_{\alpha \beta \gamma}$ be defined by $X_{\alpha} X_{\beta}=\sum_{\gamma} c_{\alpha \beta \gamma} X_{\gamma}$. Then $c_{\alpha \beta \gamma}$ is the number of matrices M whose columns sum to α, rows sum to β and the nonzero elements of M give γ.
- Reason: $c_{\alpha \beta \gamma}$ is the number of ways of writing a face C of "type" γ as $B A$ where A is of "type" α and B is of "type" β,
- and $B A$ is given by the nonempty elements of the matrix:

$$
\left[\begin{array}{cccc}
B_{1} \cap A_{1} & B_{1} \cap A_{2} & \cdots & B_{1} \cap A_{l} \\
B_{2} \cap A_{1} & B_{2} \cap A_{2} & \cdots & B_{2} \cap A_{l} \\
\vdots & \vdots & \ddots & \vdots \\
B_{m} \cap A_{1} & B_{m} \cap A_{2} & \cdots & B_{m} \cap A_{l}
\end{array}\right]
$$

The Garsia-Remmel Theorem

- Theorem. Let α, β, γ denote compositions of n. Let $c_{\alpha \beta \gamma}$ be defined by $X_{\alpha} X_{\beta}=\sum_{\gamma} c_{\alpha \beta \gamma} X_{\gamma}$. Then $c_{\alpha \beta \gamma}$ is the number of matrices M whose columns sum to α, rows sum to β and the nonzero elements of M give γ.
- Reason: $c_{\alpha \beta \gamma}$ is the number of ways of writing a face C of "type" γ as $B A$ where A is of "type" α and B is of "type" β,
- and $B A$ is given by the nonempty elements of the matrix:

$$
\left[\begin{array}{cccc}
\left|B_{1} \cap A_{1}\right| & \left|B_{1} \cap A_{2}\right| & \cdots & \left|B_{1} \cap A_{l}\right| \\
\left|B_{2} \cap A_{1}\right| & \left|B_{2} \cap A_{2}\right| & \cdots & \left|B_{2} \cap A_{l}\right| \\
\vdots & \vdots & \ddots & \vdots \\
\left|B_{m} \cap A_{1}\right| & \left|B_{m} \cap A_{2}\right| & \cdots & \left|B_{m} \cap A_{l}\right|
\end{array}\right]
$$

- Now take the cardinalities of the entries.

Solomon's Theorem

Solomon's Theorem

- Solomon showed that $\mathcal{D}\left(S_{n}\right)$ maps into the ring of characters of S_{n}.

Solomon's Theorem

- Solomon showed that $\mathcal{D}\left(S_{n}\right)$ maps into the ring of characters of S_{n}.
- This follows from the following fact about groups.

Solomon's Theorem

- Solomon showed that $\mathcal{D}\left(S_{n}\right)$ maps into the ring of characters of S_{n}.
- This follows from the following fact about groups.
- If G is a group acting on a semigroup X such that $g(x y)=g(x) g(y)$ and $G_{x} \cap G_{y}=G_{x y}$, then there is a map from $(R X)^{G}$ into the ring of characters of G.

The Quiver of $k \mathcal{F}$

The Quiver of $k \mathcal{F}$

- Let \mathcal{A} be a hyperplane arrangement. Construct a directed graph \mathcal{Q} as follows.

The Quiver of $k \mathcal{F}$

- Let \mathcal{A} be a hyperplane arrangement. Construct a directed graph \mathcal{Q} as follows.
- One vertex for each intersection of subsets of \mathcal{A}.

The Quiver of $k \mathcal{F}$

- Let \mathcal{A} be a hyperplane arrangement. Construct a directed graph \mathcal{Q} as follows.
- One vertex for each intersection of subsets of \mathcal{A}.

\mathbb{R}^{n}

Intersection of no hyperplanes.

The Quiver of $k \mathcal{F}$

- Let \mathcal{A} be a hyperplane arrangement. Construct a directed graph \mathcal{Q} as follows.
- One vertex for each intersection of subsets of \mathcal{A}.

Intersection of one hyperplane.

The Quiver of $k \mathcal{F}$

- Let \mathcal{A} be a hyperplane arrangement. Construct a directed graph \mathcal{Q} as follows.
- One vertex for each intersection of subsets of \mathcal{A}.

Intersection of at least two hyperplanes.

The Quiver of $k \mathcal{F}$

- Let \mathcal{A} be a hyperplane arrangement. Construct a directed graph \mathcal{Q} as follows.
- One vertex for each intersection of subsets of \mathcal{A}.

Order by inclusion.

The Quiver of $k \mathcal{F}$

－Let \mathcal{A} be a hyperplane arrangement．Construct a directed graph \mathcal{Q} as follows．
－One vertex for each intersection of subsets of \mathcal{A} ．

Draw an arrow $X \rightarrow Y$ iff X covers Y ．

The Quiver of $k \mathcal{F}$

The Quiver of $k \mathcal{F}$

- The path algebra $k \mathcal{Q}$ of \mathcal{Q} is the k-vector space spanned by the paths of \mathcal{Q} with multiplication given by composition of paths.

The Quiver of $k \mathcal{F}$

- The path algebra $k \mathcal{Q}$ of \mathcal{Q} is the k-vector space spanned by the paths of \mathcal{Q} with multiplication given by composition of paths.
- Theorem [S.]. \mathcal{Q} is the quiver of $k \mathcal{F}$. There is an algebra surjection $\varphi: k \mathcal{Q} \rightarrow k \mathcal{F}$ with kernel generated by the following cohomology relations, one for each interval of length two.

The Quiver of $k \mathcal{F}$

- The path algebra $k \mathcal{Q}$ of \mathcal{Q} is the k-vector space spanned by the paths of \mathcal{Q} with multiplication given by composition of paths.
- Theorem [S.]. \mathcal{Q} is the quiver of $k \mathcal{F}$. There is an algebra surjection $\varphi: k \mathcal{Q} \rightarrow k \mathcal{F}$ with kernel generated by the following cohomology relations, one for each interval of length two.

The Quiver of $k \mathcal{F}$

- The path algebra $k \mathcal{Q}$ of \mathcal{Q} is the k-vector space spanned by the paths of \mathcal{Q} with multiplication given by composition of paths.
- Theorem [S.]. \mathcal{Q} is the quiver of $k \mathcal{F}$. There is an algebra surjection $\varphi: k \mathcal{Q} \rightarrow k \mathcal{F}$ with kernel generated by the following cohomology relations, one for each interval of length two.

The Quiver of $k \mathcal{F}$

- The path algebra $k \mathcal{Q}$ of \mathcal{Q} is the k-vector space spanned by the paths of \mathcal{Q} with multiplication given by composition of paths.
- Theorem [S.]. \mathcal{Q} is the quiver of $k \mathcal{F}$. There is an algebra surjection $\varphi: k \mathcal{Q} \rightarrow k \mathcal{F}$ with kernel generated by the following cohomology relations, one for each interval of length two.

- Corollary. $k \mathcal{F}$ depends only on how the hyperplanes intersect!

The Quiver of $\mathcal{D}\left(S_{n}\right)$

The Quiver of $\mathcal{D}\left(S_{n}\right)$

- We have a surjection $\varphi: k \mathcal{Q} \rightarrow k \mathcal{F}$.

The Quiver of $\mathcal{D}\left(S_{n}\right)$

- We have a surjection $\varphi: k \mathcal{Q} \rightarrow k \mathcal{F}$.
- Lift the action of S_{n} to $k \mathcal{Q}$ using φ.

The Quiver of $\mathcal{D}\left(S_{n}\right)$

- We have a surjection $\varphi: k \mathcal{Q} \rightarrow k \mathcal{F}$.
- Lift the action of S_{n} to $k \mathcal{Q}$ using φ.
- The action maps paths to signed paths, preserving length.

The Quiver of $\mathcal{D}\left(S_{n}\right)$

- We have a surjection $\varphi: k \mathcal{Q} \rightarrow k \mathcal{F}$.
- Lift the action of S_{n} to $k \mathcal{Q}$ using φ.
- The action maps paths to signed paths, preserving length.
- Using this action, we can define a quiver $\mathcal{Q}_{S_{n}}$:

The Quiver of $\mathcal{D}\left(S_{n}\right)$

- We have a surjection $\varphi: k \mathcal{Q} \rightarrow k \mathcal{F}$.
- Lift the action of S_{n} to $k \mathcal{Q}$ using φ.
- The action maps paths to signed paths, preserving length.
- Using this action, we can define a quiver $\mathcal{Q}_{S_{n}}$:
- One vertex for each orbit of the vertices of \mathcal{Q}.

The Quiver of $\mathcal{D}\left(S_{n}\right)$

- We have a surjection $\varphi: k \mathcal{Q} \rightarrow k \mathcal{F}$.
- Lift the action of S_{n} to $k \mathcal{Q}$ using φ.
- The action maps paths to signed paths, preserving length.
- Using this action, we can define a quiver $\mathcal{Q}_{S_{n}}$:
- One vertex for each orbit of the vertices of \mathcal{Q}.
- One arrow $[X] \rightarrow[Y]$ iff $\sum \omega(X \rightarrow Y) \neq 0$.

The Quiver of $\mathcal{D}\left(S_{n}\right)$

The Quiver of $\mathcal{D}\left(S_{n}\right)$

- Theorem [Garsia-Reutenauer]. The quiver of $\mathcal{D}\left(S_{n}\right)$ has a vertex for each partition of n, and $q \rightarrow p$ iff q is obtained from p by adding two distinct integers of p.

The Quiver of $\mathcal{D}\left(S_{n}\right)$

- Theorem [Garsia-Reutenauer]. The quiver of $\mathcal{D}\left(S_{n}\right)$ has a vertex for each partition of n, and $q \rightarrow p$ iff q is obtained from p by adding two distinct integers of p.

11111

The Quiver of $\mathcal{D}\left(S_{n}\right)$

- Theorem [Garsia-Reutenauer]. The quiver of $\mathcal{D}\left(S_{n}\right)$ has a vertex for each partition of n, and $q \rightarrow p$ iff q is obtained from p by adding two distinct integers of p.

11111

- The kernel of $k \mathcal{Q}_{S_{n}} \rightarrow \mathcal{D}\left(S_{n}\right)$ is not well understood.

Idempotents in $\mathcal{D}\left(S_{n}\right)$.

Idempotents in $\mathcal{D}\left(S_{n}\right)$.

- Much interest exists in constructing idempotents in $\mathcal{D}\left(S_{n}\right)$, for applications and to understand the structure of $\mathcal{D}\left(S_{n}\right)$. Several families of idempotents have been constructed (Garsia-Reutenauer, Bergeron-Bergeron-Howlett-Taylor, Diaconis-Bayer).

Idempotents in $\mathcal{D}\left(S_{n}\right)$.

- Much interest exists in constructing idempotents in $\mathcal{D}\left(S_{n}\right)$, for applications and to understand the structure of $\mathcal{D}\left(S_{n}\right)$. Several families of idempotents have been constructed (Garsia-Reutenauer, Bergeron-Bergeron-Howlett-Taylor, Diaconis-Bayer).
- [S.] There is a nice construction of idempotents in $k \mathcal{F}$. These give idempotents in $\mathcal{D}\left(S_{n}\right)$.

Connections with the Free Lie Algebra

Connections with the Free Lie Algebra

- Let Lie_{n} denote the 1^{n} homogeneous component of the free Lie algebra on n elements. Then, as S_{n}-modules, Lie_{n} is isomorphic to the vector space spanned by the maximal paths in $k \mathcal{Q}$ modulo the relations.

Connections with the Free Lie Algebra

- Let Lie_{n} denote the 1^{n} homogeneous component of the free Lie algebra on n elements. Then, as S_{n}-modules, Lie_{n} is isomorphic to the vector space spanned by the maximal paths in $k \mathcal{Q}$ modulo the relations.
- This connection is via poset cohomology. The cohomology of the lattice of set partitions of $[n]$ is an S_{n}-module. Tensoring with the sign representation gives both of the above.

What's Next?

What's Next?

- $k \mathcal{F}$ is a Koszul algebra. Its Koszul dual is the incidence algebra of the intersection lattice of \mathcal{A}. What does this duality between the modules give us?

What's Next?

- $k \mathcal{F}$ is a Koszul algebra. Its Koszul dual is the incidence algebra of the intersection lattice of \mathcal{A}. What does this duality between the modules give us?
- Determine the quiver of the descent algebra for other finite Coxeter groups. Describe the quiver relations. (Even for S_{n}).

What's Next?

- $k \mathcal{F}$ is a Koszul algebra. Its Koszul dual is the incidence algebra of the intersection lattice of \mathcal{A}. What does this duality between the modules give us?
- Determine the quiver of the descent algebra for other finite Coxeter groups. Describe the quiver relations. (Even for S_{n}).
- Study the twisted (or skew) group algebra $k \mathcal{F} * k S_{n}$.

What's Next?

- $k \mathcal{F}$ is a Koszul algebra. Its Koszul dual is the incidence algebra of the intersection lattice of \mathcal{A}. What does this duality between the modules give us?
- Determine the quiver of the descent algebra for other finite Coxeter groups. Describe the quiver relations. (Even for S_{n}).
- Study the twisted (or skew) group algebra $k \mathcal{F} * k S_{n}$.
- \mathcal{F} is an example of a semigroup called a left regular band. Characterize the left regular bands that give Koszul algebras.

What's Next?

- $k \mathcal{F}$ is a Koszul algebra. Its Koszul dual is the incidence algebra of the intersection lattice of \mathcal{A}. What does this duality between the modules give us?
- Determine the quiver of the descent algebra for other finite Coxeter groups. Describe the quiver relations. (Even for S_{n}).
- Study the twisted (or skew) group algebra $k \mathcal{F} * k S_{n}$.
- \mathcal{F} is an example of a semigroup called a left regular band. Characterize the left regular bands that give Koszul algebras.
- Interval Greedoids: a generalization of matroid. Develop an "oriented interval greedoid" theory abstracting the theory of oriented matroids.

[^0]:

