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des
(

5, 4, 6, 7, 1, 3, 2
)

=
{

1, 4, 6
}

.
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◮ For J ⊂ [n− 1] := {1, . . . , n}, de�ne
XJ =

∑

des(σ)⊆J

σ ∈ QSn.

◮ If n = 3, then
X{2} = (1, 2, 3) + (2, 3, 1) + (1, 3, 2).

◮ The desent algebra of Sn is
D(Sn) = span

{

XJ : J ⊆ [n− 1]
}

⊂ QSn.
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The Desent Algebra of the Symmetri Group Sn

◮ The desent algebra was originally de�ned by Louis Solomon in
1976 for any �nite Coxeter group.

◮ Sine then it has experiened muh attention beause ofonnetions to:
◮ the representation theory of the symmetri group;
◮ the free Lie algebra;
◮ probability theory;
◮ Hohshild homology of algebras;
◮ ombinatoris;
◮ hyperplane arrangements.
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The Braid Arrangement
◮ A hyperplane arrangement A is a �nite set ofhyperplanes in Rn.
◮ The braid arrangement Bn onsists of thefollowing hyperplanes, where 1 ≤ i < j ≤ n.

Hij = {~v ∈ Rn : vi = vj} ⊂ Rn.
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The Faes of A
◮ The onneted omponents of Rn\

⋃

H∈A H are polyhedra.We all these hambers.
◮ The set F of polyhedral faes of the hambers are the faes ofthe arrangement A.
◮ Note: A hamber is a fae!
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F = {x, x′, y, y′, a, a′, b, b′,~0}.
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The Faes of Bn

◮ Suppose that ~v ∈ Rn is not on a hyperplane in Bn.
◮ Therefore, there exists a permutation σ ∈ Sn suh that

vσ1
< vσ2

< · · · < vσn
. (1)

◮ Hene, the hambers of Bn orrespond to elements of Sn.
vσ1

< · · · < vσn
←→ (σ1, σ2, . . . , σn).

◮ If ~v is on some hyperplanes Hij, then some of the inequalitieshange to equalities in (1). For example,
v1 = v5 < v2 = v3 < v4 ←→ ({1,5}, {2, 3}, {4})

= (15, 23, 4).
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(

B1 ∩ C1, B1 ∩ C2, · · · , B1 ∩ Cl,

B2 ∩ C1, B2 ∩ C2, · · · , B2 ∩ Cl,...
Bm ∩ C1, Bm ∩ C2, · · · , Bm ∩ Cl

)✄
,where ✄ means �disard empty intersetions�.
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Produt of Faes
◮ An example:

(34, 256, 17)(257, 134, 6) =
(

34, 25, 6, 7, 1
)

.
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Produt of Faes
◮ Geometrially: BC is the fae entered by moving a smallpositive distane along a straight line from a point in B to apoint in C.

B

C

This produt was used by Jaques Tits to give another proofthat D(Sn) is an algebra. (In an appendix to Solomon's 1976paper.)
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Random Walks on ChambersBidigare-Hanlon-Rokmore, Brown-Diaonis, Brown
◮ A step: Move from a hamber C to BC with probability pB .
◮ This enodes many well-known random walks.
◮ Random-to-Top shu�e: B = (i, [n]− i).

(3, 1245)(1, 4, 5, 3, 2) = (3, 1, 4, 5, 2).

◮ (Inverse) Ri�e Shu�e: B = (S, [n]− S), S ⊂ [n].
(24, 135)(1, 4, 5, 3, 2) = (4, 2, 1, 5, 3).

◮ Algebrai tehniques give results about the random walks.



The Sn ation on the faes F



The Sn ation on the faes F
◮ Sn an be identi�ed with the group generated by re�etions inthe hyperplanes Hij of Bn.



The Sn ation on the faes F
◮ Sn an be identi�ed with the group generated by re�etions inthe hyperplanes Hij of Bn.
◮ Sn ats on Rn by permuting oordinates.

σ(~v) = (vσ1
, vσ2

, · · · , vσn
).



The Sn ation on the faes F
◮ Sn an be identi�ed with the group generated by re�etions inthe hyperplanes Hij of Bn.
◮ Sn ats on Rn by permuting oordinates.

σ(~v) = (vσ1
, vσ2

, · · · , vσn
).

◮ This indues an ation of Sn on the faes of Bn.
σ
(

B1, B2, · · · , Bm

)

=
(

σ(B1), σ(B2), · · · , σ(Bm)
)

.



The Sn ation on the faes F
◮ Sn an be identi�ed with the group generated by re�etions inthe hyperplanes Hij of Bn.
◮ Sn ats on Rn by permuting oordinates.

σ(~v) = (vσ1
, vσ2

, · · · , vσn
).

◮ This indues an ation of Sn on the faes of Bn.
σ
(

B1, B2, · · · , Bm

)

=
(

σ(B1), σ(B2), · · · , σ(Bm)
)

.

◮ This ation preserves the produt.
σ(BC) = σ(B)σ(C).
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The Fae Semigroup Algebra kF

◮ Let k denote a �eld, with char(k) not dividing |Sn|.
◮ kF is the k-algebra spanned by elements of F ,

∑

x∈F

λxxwith multipliation de�ned using the produt of F .
◮ For example, if n = 3,

(1, 2, 3) + (32, 1) + 17(123) − (2, 13).
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Bidigare's Theorem
◮ The ation of Sn extends linearly to an ation on (kF)Sn .
◮ Let (kF)Sn denote the elements of kF invariant under theation of Sn.
◮ For example, the following is invariant under S3.

(12, 3) + (13, 2) + (23, 1).

◮ Theorem. (kF)Sn is anti-isomorphi to D(Sn).
◮ The isomorphism: multiply on the right by (1, 2, . . . , n).

(12, 3) + (13, 2) + (23, 1) 7→ (1, 2, 3) + (1, 3, 2) + (2, 3, 1)

= X{2}.
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Bidigare's TheoremProof [Brown℄.
◮ (kF)Sn ats on the vetor spae kC spanned by the hambersby left-multipliation.
◮ This indues maps kC → kC that ommute with the Sn-ation.

(kF)Sn → EndSn
(kC)

◮ We identi�ed C ↔ Sn, it holds as Sn-modules.
EndSn

(kC) = EndSn
(kSn)

∼=
→ (kSn)op.

◮ The omposition gives a multpliation-reversing algebrahomomorphism from (kF)Sn into (kSn)op.
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The Garsia-Remmel Theorem
◮ Theorem. Let α, β, γ denote ompositions of n. Let cαβγ bede�ned by XαXβ =

∑

γ cαβγXγ . Then cαβγ is the number ofmatries M whose olumns sum to α, rows sum to β and thenonzero elements of M give γ.
◮ Reason: cαβγ is the number of ways of writing a fae C of�type� γ as BA where A is of �type� α and B is of �type� β,
◮ and BA is given by the nonempty elements of the matrix:











|B1 ∩A1| |B1 ∩A2| · · · |B1 ∩Al|
|B2 ∩A1| |B2 ∩A2| · · · |B2 ∩Al|... ... . . . ...
|Bm ∩A1| |Bm ∩A2| · · · |Bm ∩Al|











◮ Now take the ardinalities of the entries.
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Solomon's Theorem
◮ Solomon showed that D(Sn) maps into the ring of haratersof Sn.
◮ This follows from the following fat about groups.
◮ If G is a group ating on a semigroup X suh that

g(xy) = g(x)g(y) and Gx ∩Gy = Gxy, then there is a mapfrom (RX)G into the ring of haraters of G.



The Quiver of kF



The Quiver of kF

◮ Let A be a hyperplane arrangement. Construt a diretedgraph Q as follows.



The Quiver of kF

◮ Let A be a hyperplane arrangement. Construt a diretedgraph Q as follows.
◮ One vertex for eah intersetion of subsets of A.

X Y

Z



The Quiver of kF

◮ Let A be a hyperplane arrangement. Construt a diretedgraph Q as follows.
◮ One vertex for eah intersetion of subsets of A.

X Y

Z

Rn

Intersetion of no hyperplanes.



The Quiver of kF
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The Quiver of kF

◮ Let A be a hyperplane arrangement. Construt a diretedgraph Q as follows.
◮ One vertex for eah intersetion of subsets of A.
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The Quiver of kF

◮ Let A be a hyperplane arrangement. Construt a diretedgraph Q as follows.
◮ One vertex for eah intersetion of subsets of A.
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The Quiver of kF

◮ Let A be a hyperplane arrangement. Construt a diretedgraph Q as follows.
◮ One vertex for eah intersetion of subsets of A.

X Y

Z

Rn

X Y Z

0Draw an arrow X → Y i� X overs Y .
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The Quiver of kF

◮ The path algebra kQ of Q is the k-vetor spae spanned bythe paths of Q with multipliation given by omposition ofpaths.
◮ Theorem [S.℄. Q is the quiver of kF . There is an algebrasurjetion ϕ : kQ → kF with kernel generated by the followingohomology relations, one for eah interval of length two.
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◮ Corollary. kF depends only on how the hyperplanes interset!
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◮ We have a surjetion ϕ : kQ → kF .
◮ Lift the ation of Sn to kQ using ϕ.
◮ The ation maps paths to signed paths, preserving length.
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The Quiver of D(Sn)

◮ We have a surjetion ϕ : kQ → kF .
◮ Lift the ation of Sn to kQ using ϕ.
◮ The ation maps paths to signed paths, preserving length.
◮ Using this ation, we an de�ne a quiver QSn

:
◮ One vertex for eah orbit of the verties of Q.
◮ One arrow [X ]→ [Y ] i� ∑

ω(X → Y ) 6= 0.
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◮ Theorem [Garsia-Reutenauer℄. The quiver of D(Sn) has avertex for eah partition of n, and q → p i� q is obtained from
p by adding two distint integers of p.
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The Quiver of D(Sn)

◮ Theorem [Garsia-Reutenauer℄. The quiver of D(Sn) has avertex for eah partition of n, and q → p i� q is obtained from
p by adding two distint integers of p.

32 221

5 2111 11111

41 311

◮ The kernel of kQSn
→ D(Sn) is not well understood.
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Idempotents in D(Sn).
◮ Muh interest exists in onstruting idempotents in D(Sn), forappliations and to understand the struture of D(Sn). Severalfamilies of idempotents have been onstruted(Garsia-Reutenauer, Bergeron-Bergeron-Howlett-Taylor,Diaonis-Bayer).



Idempotents in D(Sn).
◮ Muh interest exists in onstruting idempotents in D(Sn), forappliations and to understand the struture of D(Sn). Severalfamilies of idempotents have been onstruted(Garsia-Reutenauer, Bergeron-Bergeron-Howlett-Taylor,Diaonis-Bayer).
◮ [S.℄ There is a nie onstrution of idempotents in kF . Thesegive idempotents in D(Sn).
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Connetions with the Free Lie Algebra
◮ Let Lien denote the 1n homogeneous omponent of the freeLie algebra on n elements. Then, as Sn-modules, Lien isisomorphi to the vetor spae spanned by the maximal pathsin kQ modulo the relations.
◮ This onnetion is via poset ohomology. The ohomology ofthe lattie of set partitions of [n] is an Sn-module. Tensoringwith the sign representation gives both of the above.
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What's Next?
◮ kF is a Koszul algebra. Its Koszul dual is the inidene algebraof the intersetion lattie of A. What does this dualitybetween the modules give us?
◮ Determine the quiver of the desent algebra for other �niteCoxeter groups. Desribe the quiver relations. (Even for Sn).
◮ Study the twisted (or skew) group algebra kF ∗ kSn.
◮ F is an example of a semigroup alled a left regular band.Charaterize the left regular bands that give Koszul algebras.
◮ Interval Greedoids: a generalization of matroid. Develop an�oriented interval greedoid� theory abstrating the theory oforiented matroids.


