The Descent Algebra, Geometrically

Franco V Saliola saliola@gmail.com

LaCIM, UQÀM

13 October 2006

(日) (월) (문) (문) 문

 $\mathfrak{I}_{\mathcal{A}}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• The descent set of a permutation $\sigma \in S_n$ is

$$\operatorname{des}(\sigma) = \Big\{ i : \sigma_i > \sigma_{i+1} \Big\}.$$

 $\mathfrak{I}_{\mathcal{A}}$

∍

▶ The descent set of a permutation $\sigma \in S_n$ is

$$\operatorname{des}(\sigma) = \Big\{ i : \sigma_i > \sigma_{i+1} \Big\}.$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

An example.

• The descent set of a permutation $\sigma \in S_n$ is

$$\operatorname{des}(\sigma) = \Big\{ i : \sigma_i > \sigma_{i+1} \Big\}.$$

An example. $\sigma = (5, 4, 6, 7, 1, 3, 2).$ 6 53 $des(5,4,6,7,1,3,2) = \{1,4,6\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For
$$J \subset [n-1] := \{1, \dots, n\}$$
, define
$$X_J = \sum_{\operatorname{des}(\sigma) \subseteq J} \sigma \quad \in \mathbb{Q}S_n.$$

 $\mathfrak{I}_{\mathcal{A}}$

∍

<ロト < 聞 > < 置 > < 更 > ...

• For
$$J \subset [n-1] := \{1, \ldots, n\}$$
, define

$$X_J = \sum_{\operatorname{des}(\sigma) \subseteq J} \sigma \quad \in \mathbb{Q}S_n.$$

▶ If n = 3, then

$$X_{\{2\}} = (1, 2, 3) + (2, 3, 1) + (1, 3, 2).$$

 $\mathfrak{I}_{\mathcal{A}}$

Ð,

• For
$$J \subset [n-1] := \{1, \ldots, n\}$$
, define

$$X_J = \sum_{\operatorname{des}(\sigma) \subseteq J} \sigma \quad \in \mathbb{Q}S_n.$$

▶ If n = 3, then

$$X_{\{2\}} = (1, 2, 3) + (2, 3, 1) + (1, 3, 2).$$

• The descent algebra of S_n is

$$\mathcal{D}(S_n) = \operatorname{span}\left\{X_J : J \subseteq [n-1]\right\} \subset \mathbb{Q}S_n.$$

 $\mathfrak{I}_{\mathcal{A}}$

∍

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

► The descent algebra was originally defined by Louis Solomon in 1976 for any finite Coxeter group.

(ロ) (四) (三) (三)

500

∍

► The descent algebra was originally defined by Louis Solomon in 1976 for any finite Coxeter group.

∍

Sac

Since then it has experienced much attention because of connections to:

► The descent algebra was originally defined by Louis Solomon in 1976 for any finite Coxeter group.

- Since then it has experienced much attention because of connections to:
 - the representation theory of the symmetric group;

► The descent algebra was originally defined by Louis Solomon in 1976 for any finite Coxeter group.

- Since then it has experienced much attention because of connections to:
 - the representation theory of the symmetric group;
 - the free Lie algebra;

► The descent algebra was originally defined by Louis Solomon in 1976 for any finite Coxeter group.

- Since then it has experienced much attention because of connections to:
 - the representation theory of the symmetric group;
 - the free Lie algebra;
 - probability theory;

► The descent algebra was originally defined by Louis Solomon in 1976 for any finite Coxeter group.

- Since then it has experienced much attention because of connections to:
 - the representation theory of the symmetric group;
 - the free Lie algebra;
 - probability theory;
 - Hochschild homology of algebras;

► The descent algebra was originally defined by Louis Solomon in 1976 for any finite Coxeter group.

- Since then it has experienced much attention because of connections to:
 - the representation theory of the symmetric group;
 - the free Lie algebra;
 - probability theory;
 - Hochschild homology of algebras;
 - combinatorics;

► The descent algebra was originally defined by Louis Solomon in 1976 for any finite Coxeter group.

- Since then it has experienced much attention because of connections to:
 - the representation theory of the symmetric group;
 - the free Lie algebra;
 - probability theory;
 - Hochschild homology of algebras;
 - combinatorics;
 - hyperplane arrangements.

The Braid Arrangement

< ロ > < 個 > < 三 > < 三 > < 三 > < 三 > の < で

The Braid Arrangement

A hyperplane arrangement A is a finite set of hyperplanes in ℝⁿ.

〈ロ〉 〈母〉 〈臣〉 〈臣〉

₹

 $\mathfrak{I}_{\mathcal{A}}$

The Braid Arrangement

- A hyperplane arrangement A is a finite set of hyperplanes in ℝⁿ.
- ► The braid arrangement B_n consists of the following hyperplanes, where 1 ≤ i < j ≤ n.</p>

$$H_{ij} = \{ \vec{v} \in \mathbb{R}^n : v_i = v_j \} \subset \mathbb{R}^n.$$

∍

▶ All the hyperplanes H_{ij} contain the line $v_1 = \cdots = v_n$.

- ▶ All the hyperplanes H_{ij} contain the line $v_1 = \cdots = v_n$.
- ▶ Intersecting \mathcal{B}_n with $v_1 + \cdots + v_n = 0$ gives an arrangement in \mathbb{R}^{n-1} .

(ロ) (問) (言) (言) (言) (こ) (?)

- ▶ All the hyperplanes H_{ij} contain the line $v_1 = \cdots = v_n$.
- ▶ Intersecting \mathcal{B}_n with $v_1 + \cdots + v_n = 0$ gives an arrangement in \mathbb{R}^{n-1} .

A = A = A = A
A
A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- ▶ All the hyperplanes H_{ij} contain the line $v_1 = \cdots = v_n$.
- ▶ Intersecting \mathcal{B}_n with $v_1 + \cdots + v_n = 0$ gives an arrangement in \mathbb{R}^{n-1} .

< 🗆 🕨

5940

▶ The connected components of $\mathbb{R}^n \setminus \bigcup_{H \in \mathcal{A}} H$ are polyhedra. We call these chambers.

▶ The connected components of $\mathbb{R}^n \setminus \bigcup_{H \in \mathcal{A}} H$ are polyhedra. We call these chambers.

► The set *F* of polyhedral faces of the chambers are the faces of the arrangement *A*.

(日) (周) (王) (王)

▶ The connected components of $\mathbb{R}^n \setminus \bigcup_{H \in \mathcal{A}} H$ are polyhedra. We call these chambers.

► The set *F* of polyhedral faces of the chambers are the faces of the arrangement *A*.

(日) (周) (王) (王)

Jac.

▶ Note: A chamber is a face!

A Small Example

O > <
O > <
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

=

 \mathfrak{OQ}

A Small Example

$$\mathcal{F} = \{x, x', y, y', a, a', b, b', \vec{0}\}.$$

< □ →

₽ ▶

500

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > へ 0 へ 0

• Suppose that $\vec{v} \in \mathbb{R}^n$ is not on a hyperplane in \mathcal{B}_n .

- Suppose that $\vec{v} \in \mathbb{R}^n$ is not on a hyperplane in \mathcal{B}_n .
- \blacktriangleright Therefore, there exists a permutation $\sigma \in S_n$ such that

$$v_{\sigma_1} < v_{\sigma_2} < \dots < v_{\sigma_n}. \tag{1}$$

<ロ> <四> <四> <四> <三> <三> <三> 三三

 $\mathfrak{I}_{\mathcal{A}}$

- Suppose that $\vec{v} \in \mathbb{R}^n$ is not on a hyperplane in \mathcal{B}_n .
- \blacktriangleright Therefore, there exists a permutation $\sigma \in S_n$ such that

$$v_{\sigma_1} < v_{\sigma_2} < \dots < v_{\sigma_n}. \tag{1}$$

∍

500

▶ Hence, the chambers of \mathcal{B}_n correspond to elements of S_n .

$$v_{\sigma_1} < \cdots < v_{\sigma_n} \longleftrightarrow (\sigma_1, \sigma_2, \dots, \sigma_n).$$
The Faces of \mathcal{B}_n

- Suppose that $\vec{v} \in \mathbb{R}^n$ is not on a hyperplane in \mathcal{B}_n .
- Therefore, there exists a permutation $\sigma \in S_n$ such that

$$v_{\sigma_1} < v_{\sigma_2} < \dots < v_{\sigma_n}. \tag{1}$$

Jac.

▶ Hence, the chambers of \mathcal{B}_n correspond to elements of S_n .

$$v_{\sigma_1} < \cdots < v_{\sigma_n} \longleftrightarrow (\sigma_1, \sigma_2, \dots, \sigma_n).$$

▶ If \vec{v} is on some hyperplanes H_{ij} , then some of the inequalities change to equalities in (1). For example,

$$v_1 = v_5 < v_2 = v_3 < v_4$$

The Faces of \mathcal{B}_n

- Suppose that $\vec{v} \in \mathbb{R}^n$ is not on a hyperplane in \mathcal{B}_n .
- Therefore, there exists a permutation $\sigma \in S_n$ such that

$$v_{\sigma_1} < v_{\sigma_2} < \dots < v_{\sigma_n}. \tag{1}$$

Jac.

▶ Hence, the chambers of \mathcal{B}_n correspond to elements of S_n .

$$v_{\sigma_1} < \cdots < v_{\sigma_n} \longleftrightarrow (\sigma_1, \sigma_2, \dots, \sigma_n).$$

▶ If \vec{v} is on some hyperplanes H_{ij} , then some of the inequalities change to equalities in (1). For example,

$$v_1 = v_5 < v_2 = v_3 < v_4 \longleftrightarrow (\{1,5\}, \{2,3\}, \{4\})$$

= (15, 23, 4).

▶ If $B = (B_1, B_2, ..., B_m)$ and $C = (C_1, C_2, ..., C_l)$, then the product of B and C is the face

▶ If $B = (B_1, B_2, ..., B_m)$ and $C = (C_1, C_2, ..., C_l)$, then the product of B and C is the face

 $(B_1 \cap C_1, B_1 \cap C_2, \cdots, B_1 \cap C_l,$

(日) (個) (注) (注) (注)

500

▶ If $B = (B_1, B_2, ..., B_m)$ and $C = (C_1, C_2, ..., C_l)$, then the product of B and C is the face

$$\begin{pmatrix} B_1 \cap C_1, B_1 \cap C_2, \cdots, B_1 \cap C_l, \\ B_2 \cap C_1, B_2 \cap C_2, \cdots, B_2 \cap C_l, \end{pmatrix}$$

 $\mathfrak{I}_{\mathcal{A}}$

∍

▶ If $B = (B_1, B_2, ..., B_m)$ and $C = (C_1, C_2, ..., C_l)$, then the product of B and C is the face

$$\begin{pmatrix} B_1 \cap C_1, \ B_1 \cap C_2, \ \cdots, \ B_1 \cap C_l, \\ B_2 \cap C_1, \ B_2 \cap C_2, \ \cdots, \ B_2 \cap C_l, \\ \vdots \\ B_m \cap C_1, \ B_m \cap C_2, \ \cdots, \ B_m \cap C_l \end{pmatrix}^{\preccurlyeq},$$

 $\mathfrak{I}_{\mathcal{A}}$

∍

▶ If $B = (B_1, B_2, ..., B_m)$ and $C = (C_1, C_2, ..., C_l)$, then the product of B and C is the face

$$\begin{pmatrix} B_1 \cap C_1, & B_1 \cap C_2, & \cdots, & B_1 \cap C_l, \\ B_2 \cap C_1, & B_2 \cap C_2, & \cdots, & B_2 \cap C_l, \\ & \vdots \\ B_m \cap C_1, & B_m \cap C_2, & \cdots, & B_m \cap C_l \end{pmatrix}^{\prec},$$

〈ロ〉 〈伊〉 〈臣〉 〈臣〉

∍

Sac

where > means "discard empty intersections".

► An example:

(34, 256, 17)(257, 134, 6)

► An example:

$$(34,256,17)(257,134,6) = (34 \cap 257)$$

€

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

► An example:

$$(34, 256, 17)(257, 134, 6) = (\emptyset$$

€

► An example:

$$(34, 256, 17)(257, 134, 6) = ($$

€

► An example:

$$(34, 256, 17)(257(134, 6)) = (34 \cap 134)$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

₹

► An example:

$$(34, 256, 17)(257(134, 6)) = (34, 6)$$

€

► An example:

$$(34, 256, 17)(257, 134, 6) = (34, 34 \cap 6)$$

€

► An example:

$$(34,256,17)(257,134,6) = (34, \emptyset)$$

€

► An example:

$$(34, 256, 17)(257, 134, 6) = (34, 6)$$

€

► An example:

$$(34(256,17)(257,134,6) = (34, 256 \cap 257)$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

₹

► An example:

$$(34(256),17)(257),134,6) = (34, 25),$$

€

► An example:

$$(34(256),17)(257(134),6) = (34, 25, 256 \cap 134)$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

₹

► An example:

$$(34(256),17)(257(134),6) = (34, 25, \emptyset)$$

€

► An example:

$$(34(256),17)(257(134),6) = (34, 25,$$

€

► An example:

$$(34(256),17)(257,134,6) = (34, 25, 256 \cap 6)$$

€

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

► An example:

$$(34(256,17)(257,134,6) = (34, 25, 6,$$

€

► An example:

$$(34, 256, 17)(257, 134, 6) = (34, 25, 6, 17 \cap 257)$$

〈ロ〉 〈母〉 〈臣〉 〈臣〉

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

₹

► An example:

$$(34, 256, 17)(257, 134, 6) = (34, 25, 6, 7, 134, 6)$$

€

► An example:

$$(34, 256 17)(257 134)6) = (34, 25, 6, 7, 17 \cap 134)$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

₹

► An example:

$$(34, 256 17)(257 134)6) = (34, 25, 6, 7, 1, 1)$$

€

► An example:

$$(34, 256, 17)(257, 134, 6) = (34, 25, 6, 7, 1, 17 \cap 6)$$

€

► An example:

$$(34, 256 17)(257, 134 6) = (34, 25, 6, 7, 1, \emptyset)$$

・ロト ・ 御 ト ・ 注 ト ・ 注 ト

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

₹

► An example:

$$(34, 256, 17)(257, 134, 6) = (34, 25, 6, 7, 1).$$

€

• Geometrically: *BC* is the face entered by moving a small positive distance along a straight line from a point in *B* to a point in *C*.

500

∍

▶ Geometrically: *BC* is the face entered by moving a small positive distance along a straight line from a point in *B* to a point in *C*.

< 🗆 🕨

SQ (P

▶ Geometrically: BC is the face entered by moving a small positive distance along a straight line from a point in B to a point in C.

< 🗆 🕨

SQ (P
Geometrically: BC is the face entered by moving a small positive distance along a straight line from a point in B to a point in C.

If C is a chamber, then BC is the chamber containing B that is separated from C by the fewest number of hyperplanes.

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▶ Geometrically: *BC* is the face entered by moving a small positive distance along a straight line from a point in *B* to a point in *C*.

< 🗆 🕨

▶ Geometrically: BC is the face entered by moving a small positive distance along a straight line from a point in B to a point in C.

< 🗆 🕨

Geometrically: BC is the face entered by moving a small positive distance along a straight line from a point in B to a point in C.

This product was used by Jacques Tits to give another proof that $\mathcal{D}(S_n)$ is an algebra. (In an appendix to Solomon's 1976 paper.)

Random Walks on Chambers

Bidigare-Hanlon-Rockmore, Brown-Diaconis, Brown

• A step: Move from a chamber C to BC with probability p_B .

A step: Move from a chamber C to BC with probability p_B .

(ロ) (四) (三) (三) (三) (0)

> This encodes many well-known random walks.

- A step: Move from a chamber C to BC with probability p_B .
- This encodes many well-known random walks.
- Random-to-Top shuffle: B = (i, [n] i).

(3, 1245)(1, 4, 5, 3, 2) = (3, 1, 4, 5, 2).

- A step: Move from a chamber C to BC with probability p_B .
- This encodes many well-known random walks.
- Random-to-Top shuffle: B = (i, [n] i).

 $(\mathbf{3}, 1245)(1, 4, 5, \mathbf{3}, 2) = (\mathbf{3}, 1, 4, 5, 2).$

▶ (Inverse) Riffle Shuffle: $B = (S, [n] - S), S \subset [n]$.

(24, 135)(1, 4, 5, 3, 2) = (4, 2, 1, 5, 3).

Jac.

- A step: Move from a chamber C to BC with probability p_B .
- This encodes many well-known random walks.
- Random-to-Top shuffle: B = (i, [n] i).

(3, 1245)(1, 4, 5, 3, 2) = (3, 1, 4, 5, 2).

▶ (Inverse) Riffle Shuffle: $B = (S, [n] - S), S \subset [n]$.

(24, 135)(1, 4, 5, 3, 2) = (4, 2, 1, 5, 3).

Jac.

Algebraic techniques give results about the random walks.

► S_n can be identified with the group generated by reflections in the hyperplanes H_{ij} of B_n.

- ► S_n can be identified with the group generated by reflections in the hyperplanes H_{ij} of B_n.
- S_n acts on \mathbb{R}^n by permuting coordinates.

$$\sigma(\vec{v}) = (v_{\sigma_1}, v_{\sigma_2}, \cdots, v_{\sigma_n}).$$

(ロ) (四) (三) (三) (三) (0)

- ► S_n can be identified with the group generated by reflections in the hyperplanes H_{ij} of B_n.
- S_n acts on \mathbb{R}^n by permuting coordinates.

$$\sigma(\vec{v}) = (v_{\sigma_1}, v_{\sigma_2}, \cdots, v_{\sigma_n}).$$

• This induces an action of S_n on the faces of \mathcal{B}_n .

$$\sigma(B_1, B_2, \cdots, B_m) = (\sigma(B_1), \sigma(B_2), \cdots, \sigma(B_m)).$$

- S_n can be identified with the group generated by reflections in the hyperplanes H_{ij} of B_n.
- S_n acts on \mathbb{R}^n by permuting coordinates.

$$\sigma(\vec{v}) = (v_{\sigma_1}, v_{\sigma_2}, \cdots, v_{\sigma_n}).$$

• This induces an action of S_n on the faces of \mathcal{B}_n .

$$\sigma(B_1, B_2, \cdots, B_m) = (\sigma(B_1), \sigma(B_2), \cdots, \sigma(B_m)).$$

This action preserves the product.

$$\sigma(BC) = \sigma(B)\sigma(C).$$

• Let k denote a field, with char(k) not dividing $|S_n|$.

〈ロ〉 〈伊〉 〈臣〉 〈臣〉

- Let k denote a field, with char(k) not dividing $|S_n|$.
- $k\mathcal{F}$ is the k-algebra spanned by elements of \mathcal{F} ,

500

with multiplication defined using the product of \mathcal{F} .

- Let k denote a field, with char(k) not dividing $|S_n|$.
- $k\mathcal{F}$ is the k-algebra spanned by elements of \mathcal{F} ,

with multiplication defined using the product of \mathcal{F} .

(1, 2, 3) + (32, 1) + 17(123) - (2, 13).

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > へ 0 へ 0

• The action of S_n extends linearly to an action on $(k\mathcal{F})^{S_n}$.

- The action of S_n extends linearly to an action on $(k\mathcal{F})^{S_n}$.
- ▶ Let (k𝒫)^{S_n} denote the elements of k𝒫 invariant under the action of S_n.

< ロ > < 母 > < 三 > < 三 > < 三 > シ へ 三 > シ へ 回 > シ へ Q へ つ

- ▶ The action of S_n extends linearly to an action on $(k\mathcal{F})^{S_n}$.
- ▶ Let (k𝒫)^{S_n} denote the elements of k𝒫 invariant under the action of S_n.
- For example, the following is invariant under S_3 .

$$(12,3) + (13,2) + (23,1).$$

- ロ > - 4 目 > - 4 目 > - 4 目 > - 9 へ ()

- ▶ The action of S_n extends linearly to an action on $(k\mathcal{F})^{S_n}$.
- ▶ Let (k𝒫)^{S_n} denote the elements of k𝒫 invariant under the action of S_n.
- For example, the following is invariant under S_3 .

$$(12,3) + (13,2) + (23,1).$$

(ロ) (同) (三) (三) (三) (○) (○)

• Theorem. $(k\mathcal{F})^{S_n}$ is anti-isomorphic to $\mathcal{D}(S_n)$.

- ▶ The action of S_n extends linearly to an action on $(k\mathcal{F})^{S_n}$.
- ▶ Let (k𝒫)^{S_n} denote the elements of k𝒫 invariant under the action of S_n.
- For example, the following is invariant under S_3 .

$$(12,3) + (13,2) + (23,1).$$

(ロ) (同) (三) (三) (三) (○) (○)

- Theorem. $(k\mathcal{F})^{S_n}$ is anti-isomorphic to $\mathcal{D}(S_n)$.
- ► The isomorphism: multiply on the right by (1,2,...,n). (12,3)

- The action of S_n extends linearly to an action on $(k\mathcal{F})^{S_n}$.
- ▶ Let (k𝒫)^{S_n} denote the elements of k𝒫 invariant under the action of S_n.
- For example, the following is invariant under S_3 .

$$(12,3) + (13,2) + (23,1).$$

(ロ) (同) (三) (三) (三) (○) (○)

- Theorem. $(k\mathcal{F})^{S_n}$ is anti-isomorphic to $\mathcal{D}(S_n)$.
- ► The isomorphism: multiply on the right by (1, 2, ..., n). (12, 3) + (13, 2) + (23, 1)

- ▶ The action of S_n extends linearly to an action on $(k\mathcal{F})^{S_n}$.
- ▶ Let (k𝒫)^{S_n} denote the elements of k𝒫 invariant under the action of S_n.
- For example, the following is invariant under S_3 .

$$(12,3) + (13,2) + (23,1).$$

- Theorem. $(k\mathcal{F})^{S_n}$ is anti-isomorphic to $\mathcal{D}(S_n)$.
- ▶ The isomorphism: multiply on the right by (1, 2, ..., n). $(12, 3) + (13, 2) + (23, 1) \mapsto (1, 2, 3) + (1, 3, 2) + (2, 3, 1)$ $= X_{\{2\}}.$

• $(k\mathcal{F})^{S_n}$ acts on the vector space $k\mathcal{C}$ spanned by the chambers by left-multiplication.

(ロ) (問) (言) (言) (言) (こ) (?)

- $(k\mathcal{F})^{S_n}$ acts on the vector space $k\mathcal{C}$ spanned by the chambers by left-multiplication.
- This induces maps $k\mathcal{C} \to k\mathcal{C}$ that commute with the S_n -action.

$$(k\mathcal{F})^{S_n} \to \operatorname{End}_{S_n}(k\mathcal{C})$$

- $(k\mathcal{F})^{S_n}$ acts on the vector space $k\mathcal{C}$ spanned by the chambers by left-multiplication.
- This induces maps $k\mathcal{C} \to k\mathcal{C}$ that commute with the S_n -action.

$$(k\mathcal{F})^{S_n} \to \operatorname{End}_{S_n}(k\mathcal{C})$$

• We identified $\mathcal{C} \leftrightarrow S_n$, it holds as S_n -modules.

$$\operatorname{End}_{S_n}(k\mathcal{C}) = \operatorname{End}_{S_n}(kS_n) \xrightarrow{\cong} (kS_n)^{op}.$$

- $(k\mathcal{F})^{S_n}$ acts on the vector space $k\mathcal{C}$ spanned by the chambers by left-multiplication.
- ▶ This induces maps $kC \rightarrow kC$ that commute with the S_n -action.

$$(k\mathcal{F})^{S_n} \to \operatorname{End}_{S_n}(k\mathcal{C})$$

• We identified $\mathcal{C} \leftrightarrow S_n$, it holds as S_n -modules.

$$\operatorname{End}_{S_n}(k\mathcal{C}) = \operatorname{End}_{S_n}(kS_n) \xrightarrow{\cong} (kS_n)^{op}.$$

500

► The composition gives a multplication-reversing algebra homomorphism from (kF)^{Sn} into (kS_n)^{op}.

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > へ 0 へ 0

▶ Theorem. Let α, β, γ denote compositions of n. Let $c_{\alpha\beta\gamma}$ be defined by $X_{\alpha}X_{\beta} = \sum_{\gamma} c_{\alpha\beta\gamma}X_{\gamma}$. Then $c_{\alpha\beta\gamma}$ is the number of matrices M whose columns sum to α , rows sum to β and the nonzero elements of M give γ .

- ▶ Theorem. Let α, β, γ denote compositions of n. Let $c_{\alpha\beta\gamma}$ be defined by $X_{\alpha}X_{\beta} = \sum_{\gamma} c_{\alpha\beta\gamma}X_{\gamma}$. Then $c_{\alpha\beta\gamma}$ is the number of matrices M whose columns sum to α , rows sum to β and the nonzero elements of M give γ .
- Reason: c_{αβγ} is the number of ways of writing a face C of "type" γ as BA where A is of "type" α and B is of "type" β,

- ▶ Theorem. Let α, β, γ denote compositions of n. Let $c_{\alpha\beta\gamma}$ be defined by $X_{\alpha}X_{\beta} = \sum_{\gamma} c_{\alpha\beta\gamma}X_{\gamma}$. Then $c_{\alpha\beta\gamma}$ is the number of matrices M whose columns sum to α , rows sum to β and the nonzero elements of M give γ .
- Reason: c_{αβγ} is the number of ways of writing a face C of "type" γ as BA where A is of "type" α and B is of "type" β,
- ▶ and *BA* is given by the nonempty elements of the matrix:

$$\begin{bmatrix} B_{1} \cap A_{1} & B_{1} \cap A_{2} & \cdots & B_{1} \cap A_{l} \\ B_{2} \cap A_{1} & B_{2} \cap A_{2} & \cdots & B_{2} \cap A_{l} \\ \vdots & \vdots & \ddots & \vdots \\ B_{m} \cap A_{1} & B_{m} \cap A_{2} & \cdots & B_{m} \cap A_{l} \end{bmatrix}$$
The Garsia-Remmel Theorem

- Theorem. Let α, β, γ denote compositions of n. Let c_{αβγ} be defined by X_αX_β = ∑_γ c_{αβγ}X_γ. Then c_{αβγ} is the number of matrices M whose columns sum to α, rows sum to β and the nonzero elements of M give γ.
- Reason: c_{αβγ} is the number of ways of writing a face C of "type" γ as BA where A is of "type" α and B is of "type" β,
- ▶ and *BA* is given by the nonempty elements of the matrix:

$$\begin{bmatrix} |B_1 \cap A_1| & |B_1 \cap A_2| & \cdots & |B_1 \cap A_l| \\ |B_2 \cap A_1| & |B_2 \cap A_2| & \cdots & |B_2 \cap A_l| \\ \vdots & \vdots & \ddots & \vdots \\ |B_m \cap A_1| & |B_m \cap A_2| & \cdots & |B_m \cap A_l| \end{bmatrix}$$

Now take the cardinalities of the entries.

Solomon showed that $\mathcal{D}(S_n)$ maps into the ring of characters of S_n .

▶ Solomon showed that $\mathcal{D}(S_n)$ maps into the ring of characters of S_n .

(日) (월) (문) (문) 문

 $\mathfrak{I}_{\mathcal{A}}$

> This follows from the following fact about groups.

- Solomon showed that $\mathcal{D}(S_n)$ maps into the ring of characters of S_n .
- This follows from the following fact about groups.
- If G is a group acting on a semigroup X such that g(xy) = g(x)g(y) and $G_x \cap G_y = G_{xy}$, then there is a map from $(RX)^G$ into the ring of characters of G.

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

 Let A be a hyperplane arrangement. Construct a directed graph Q as follows.

 Let A be a hyperplane arrangement. Construct a directed graph Q as follows.

《曰》 《聞》 《言》 《言》

Jac.

• One vertex for each intersection of subsets of \mathcal{A} .

 Let A be a hyperplane arrangement. Construct a directed graph Q as follows.

 \mathbb{R}^{n}

Sac

• One vertex for each intersection of subsets of \mathcal{A} .

Intersection of no hyperplanes.

- Let A be a hyperplane arrangement. Construct a directed graph Q as follows.
- One vertex for each intersection of subsets of \mathcal{A} .

Intersection of one hyperplane.

Sac

- Let A be a hyperplane arrangement. Construct a directed graph Q as follows.
- One vertex for each intersection of subsets of \mathcal{A} .

Intersection of at least two hyperplanes.

Jac.

- Let A be a hyperplane arrangement. Construct a directed graph Q as follows.
- One vertex for each intersection of subsets of \mathcal{A} .

Order by inclusion.

Jac.

- Let A be a hyperplane arrangement. Construct a directed graph Q as follows.
- One vertex for each intersection of subsets of \mathcal{A} .

Draw an arrow $X \to Y$ iff X covers Y.

< □ > < 同 > <

글 🖌 🔺 글 🕨

Jac.

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

▶ The path algebra kQ of Q is the k-vector space spanned by the paths of Q with multiplication given by composition of paths.

- ► The path algebra kQ of Q is the k-vector space spanned by the paths of Q with multiplication given by composition of paths.
- ► Theorem [S.]. Q is the quiver of kF. There is an algebra surjection φ : kQ → kF with kernel generated by the following cohomology relations, one for each interval of length two.

Sac

- ► The path algebra kQ of Q is the k-vector space spanned by the paths of Q with multiplication given by composition of paths.
- ► Theorem [S.]. Q is the quiver of kF. There is an algebra surjection φ : kQ → kF with kernel generated by the following cohomology relations, one for each interval of length two.

- ▶ The path algebra kQ of Q is the k-vector space spanned by the paths of Q with multiplication given by composition of paths.
- ► Theorem [S.]. Q is the quiver of kF. There is an algebra surjection φ : kQ → kF with kernel generated by the following cohomology relations, one for each interval of length two.

- ► The path algebra kQ of Q is the k-vector space spanned by the paths of Q with multiplication given by composition of paths.
- ► Theorem [S.]. Q is the quiver of kF. There is an algebra surjection φ : kQ → kF with kernel generated by the following cohomology relations, one for each interval of length two.

• Corollary. $k\mathcal{F}$ depends only on how the hyperplanes intersect!

• We have a surjection $\varphi: k\mathcal{Q} \to k\mathcal{F}$.

- We have a surjection $\varphi: k\mathcal{Q} \to k\mathcal{F}$.
- Lift the action of S_n to $k\mathcal{Q}$ using φ .

(日) (四) (三) (三) (三)

- We have a surjection $\varphi: k\mathcal{Q} \to k\mathcal{F}$.
- Lift the action of S_n to $k\mathcal{Q}$ using φ .
- > The action maps paths to signed paths, preserving length.

〈ロ〉 〈聞〉 〈注〉 〈注〉 二注

- We have a surjection $\varphi: k\mathcal{Q} \to k\mathcal{F}$.
- Lift the action of S_n to $k\mathcal{Q}$ using φ .
- > The action maps paths to signed paths, preserving length.

< ロ > < 伊 > < 三 > < 三 > 三 9 9 9 9

• Using this action, we can define a quiver \mathcal{Q}_{S_n} :

- We have a surjection $\varphi: k\mathcal{Q} \to k\mathcal{F}$.
- Lift the action of S_n to $k\mathcal{Q}$ using φ .
- The action maps paths to signed paths, preserving length.

(D) (2) (2) (2) (2)

Sac

- Using this action, we can define a quiver Q_{S_n} :
 - One vertex for each orbit of the vertices of Q.

- We have a surjection $\varphi: k\mathcal{Q} \to k\mathcal{F}$.
- Lift the action of S_n to $k\mathcal{Q}$ using φ .
- The action maps paths to signed paths, preserving length.

Sac

- Using this action, we can define a quiver \mathcal{Q}_{S_n} :
 - One vertex for each orbit of the vertices of Q.
 - One arrow $[X] \to [Y]$ iff $\sum \omega(X \to Y) \neq 0$.

▶ Theorem [Garsia-Reutenauer]. The quiver of $\mathcal{D}(S_n)$ has a vertex for each partition of n, and $q \rightarrow p$ iff q is obtained from p by adding two distinct integers of p.

Sac

▶ Theorem [Garsia-Reutenauer]. The quiver of $\mathcal{D}(S_n)$ has a vertex for each partition of n, and $q \rightarrow p$ iff q is obtained from p by adding two distinct integers of p.

A D > < A + D > <</p>

SQ (P

▶ Theorem [Garsia-Reutenauer]. The quiver of $\mathcal{D}(S_n)$ has a vertex for each partition of n, and $q \rightarrow p$ iff q is obtained from p by adding two distinct integers of p.

▶ The kernel of $kQ_{S_n} \rightarrow D(S_n)$ is not well understood.

Idempotents in $\mathcal{D}(S_n)$.

Idempotents in $\mathcal{D}(S_n)$.

► Much interest exists in constructing idempotents in D(S_n), for applications and to understand the structure of D(S_n). Several families of idempotents have been constructed (Garsia-Reutenauer, Bergeron-Bergeron-Howlett-Taylor, Diaconis-Bayer).

nac

Idempotents in $\mathcal{D}(S_n)$.

- Much interest exists in constructing idempotents in D(S_n), for applications and to understand the structure of D(S_n). Several families of idempotents have been constructed (Garsia-Reutenauer, Bergeron-Bergeron-Howlett-Taylor, Diaconis-Bayer).
- [S.] There is a nice construction of idempotents in $k\mathcal{F}$. These give idempotents in $\mathcal{D}(S_n)$.

Connections with the Free Lie Algebra

< ロ > < 個 > < 三 > < 三 > < 三 > < 三 > の < で

Connections with the Free Lie Algebra

Let Lie_n denote the 1ⁿ homogeneous component of the free Lie algebra on n elements. Then, as S_n-modules, Lie_n is isomorphic to the vector space spanned by the maximal paths in kQ modulo the relations.

Connections with the Free Lie Algebra

- Let Lie_n denote the 1ⁿ homogeneous component of the free Lie algebra on n elements. Then, as S_n-modules, Lie_n is isomorphic to the vector space spanned by the maximal paths in kQ modulo the relations.
- ▶ This connection is via poset cohomology. The cohomology of the lattice of set partitions of [n] is an S_n-module. Tensoring with the sign representation gives both of the above.
▶ kF is a Koszul algebra. Its Koszul dual is the incidence algebra of the intersection lattice of A. What does this duality between the modules give us?

〈ロ〉 〈聞〉 〈注〉 〈注〉 二注

 $\mathfrak{I}_{\mathcal{A}}$

- ▶ kF is a Koszul algebra. Its Koszul dual is the incidence algebra of the intersection lattice of A. What does this duality between the modules give us?
- Determine the quiver of the descent algebra for other finite Coxeter groups. Describe the quiver relations. (Even for S_n).

Sac

- ▶ kF is a Koszul algebra. Its Koszul dual is the incidence algebra of the intersection lattice of A. What does this duality between the modules give us?
- Determine the quiver of the descent algebra for other finite Coxeter groups. Describe the quiver relations. (Even for S_n).

Sac

Study the twisted (or skew) group algebra $k\mathcal{F} * kS_n$.

- ▶ kF is a Koszul algebra. Its Koszul dual is the incidence algebra of the intersection lattice of A. What does this duality between the modules give us?
- Determine the quiver of the descent algebra for other finite Coxeter groups. Describe the quiver relations. (Even for S_n).
- Study the twisted (or skew) group algebra $k\mathcal{F} * kS_n$.
- ► F is an example of a semigroup called a left regular band. Characterize the left regular bands that give Koszul algebras.

Sac

- ▶ kF is a Koszul algebra. Its Koszul dual is the incidence algebra of the intersection lattice of A. What does this duality between the modules give us?
- Determine the quiver of the descent algebra for other finite Coxeter groups. Describe the quiver relations. (Even for S_n).
- Study the twisted (or skew) group algebra $k\mathcal{F} * kS_n$.
- *F* is an example of a semigroup called a left regular band. Characterize the left regular bands that give Koszul algebras.
- Interval Greedoids: a generalization of matroid. Develop an "oriented interval greedoid" theory abstracting the theory of oriented matroids.