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Hyperplane Arrangements

A hyperplane arrangement A is a �nite set of hyperplanes in Rn.

We'll consider central hyperplane arrangements: all hyperplanes
contain 0 ∈ Rn.
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The Faces F

The hyperplanes partition Rn into polyhedral sets. The set of faces
of these polyhedra are the faces of A.

Partial order: f ≤ g ⇐⇒ f is a face of g.
The maximal faces are called chambers.
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The Intersection Lattice L

The intersection lattice L of A is the collection of all possible
intersections of the hyperplanes in A ordered by inclusion.
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Warning: Others order L be reverse inclusion!
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The Support Map

supp : F → L sends a face to the linear span of that face.
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This is an order-preserving surjection of posets.
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A Product on F

xy is the face you are in by moving a small positive distance along
a line from x to y.
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Another charaterization: oriented matroid composition.
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Some Computations
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Some Computations
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Some Computations
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Some Computations
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Some Computations
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¥
¦supp(xy) = supp(x) ∨ supp(y).

Therefore, supp : F → L is a homomorphism of semigroups.
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The Face Semigroup Algebra

kF is the set of formal linear combinations of elements of F
∑

x∈F
λxx

with multiplication de�ned using the product of F .
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Markov Chains

� A class of Markov chains can be encoded as random walks on the
chambers of A.
� A step in the chain: From c move to xc with probability px.
� The transition matrix of the Markov chain is the matrix of the
linear transformation of left multiplication by

∑

x∈F
pxx,

where px is the probability measure on the faces F .
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The Descent Algebra

� Let W be a �nite Coxeter group. Solomon de�ned a subalgebra of
the group algebra kW called the descent algebra of W .
� W is generated by re�ections, so the hyperplanes �xed by a
re�ection of W form a hyperplane arrangement.
� W acts on the faces F , hence also on the semigroup algebra kF .

Theorem: [Bidigare] The invariant subalgebra (kF)W

is isomorphic to Solomon's descent algebra.
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Representations of kF

supp : kF // // kL aa
∼=

!!DD
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kernel is nilpotent
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(semisimple)
k

=⇒ Representations are one-dimensional and indexed by X ∈ L:

χX : kF → k

χX(y) =





1, if supp(y) ≤ X,

0, if supp(y) 6≤ X.
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Quivers

A quiver Q is a directed graph. The path algebra kQ of a quiver is
the k-vector space spanned by the paths of Q with multiplication
the composition of paths.
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Quivers

If all the simple modules of an algebra A are one-dimensional, then
there exists a quiver Q and an algebra surjection kQ → A.

¨
§

¥
¦What is the quiver Q of kF?

(The quiver of an algebra is canonical, but the surjection is not.)
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Vertices and Arrows of a Quiver

� The vertices and the arrows of Q generate the path algebra kQ,
so they must map to generators of A.
� The vertices map to idempotents in A.
� The arrows, being nilpotent and generators, map to elements in

rad(A)/ rad2(A).

� So the number of arrows from X to Y is

dimk

(
Y · rad(A)/ rad2(A) ·X)

.
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Number of Vertices

Idempotents �correspond� to isomorphism classes of simple
modules, so the number of vertices of the quiver is the number of
isomorphism classes of irreducible representations.

¨
§

¥
¦Q0 = L.
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Number of Arrows

The number of arrows X → Y is

dimk

(
Y · rad(A)/ rad2(A) ·X)

= dimk Ext1kF (kX , kY ),

where kX is a simple module corresponding to the vertex X.
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I Know What You Are Thinking.
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Ext?!
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What do I need to know about Ext?

To compute Exti
kF (kX , kY ) you need a projective resolution of kX .

A projective resolution is an exact sequence of kF-modules

· · · −→ Pi −→ · · · −→ P1 −→ P0 −→ kX −→ 0

where the modules Pi are projective modules.

We'll use the geometry of the arrangement to construct one.
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Projective Resolutions of Simple Modules

� Intersect the arrangement with a sphere centered at the origin.
� The dual cell decomposition of the sphere is a zonotope Z.

� The face poset of Z is the opposite of the face poset of F .
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� Therefore the augmented cellular chain complex of Z can be
identi�ed with the sequence

¨
§

¥
¦· · · ∂−−−−→ kFp

∂−−−−→ · · · ∂−−−−→ kF0
χ−−−−→ k −−−−→ 0,

where Fp is the set of codimension p faces in F .
� This sequence is exact since Z has trivial homology.
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The boundary operator ∂ is de�ned by constructing a set of
incidence numbers for the faces F .

• Pick an orientation εX for each subspace X ∈ L.
• If x ≤ y, then pick a positively oriented basis {~e1}i of supp(x)

and pick a vector ~v in y.

• De�ne [x : y] = εX(~e1, . . . , ~er, ~v).

∂(x) =
∑
ymx

[x : y]y.
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∂−−−−→ · · · ∂−−−−→
¨
§

¥
¦kF0

χ−−−−→ k −−−−→ 0

De�ne the action of F on Fp by

x · y =





xy, if supp(x) ≤ supp(y)

0, if supp(x) 6≤ supp(y).

Then ∂ is a left kF-module homomoprhism.

27



'

&

$

%

®

­

©

ª· · · ∂−−−−→ kFp
∂−−−−→ · · · ∂−−−−→ kF0

¤
£

¡
¢χ

−−−−→
¤
£

¡
¢k −−−−→ 0

For χ : kF0 → k to be a module morphism, we must have

χ(y) = 1 for all y ∈ F .
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Some History

This construction was used by Brown and Diaconis to compute the
multiplicities of the eigenvalues of the random walk on the
chambers of the hyperplane arrangement.
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∂−−−−→ · · · ∂−−−−→ kF0
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Observe that χ : kF0 → k

χ(y) = 1 for all y ∈ F

is the irreducible representation χRn : kF → k

χRn(y) = 1 if supp(y) ≤ Rn.

So
¤
£

¡
¢k is the simple module kRn .
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kFp is Projective!
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∂−−−−→ · · · ∂−−−−→
¨
§
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¦kF0

χ−−−−→ k −−−−→ 0

Fix x ∈ F with support X. De�ne elements

eX = x−
∑

Y >X

xeY .

They form a complete set of primitive orthogonal idempotents and

xeY =





xeY , if supp(x) ≤ Y,

0, if supp(x) 6≤ Y.

This is isomorphic to the action of F on Fp.
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Theorem: The quiver Q of kF coincides with the
Hasse diagram of L.
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The Relations

For every interval of length two in L take the sum of all the paths
of length that in the interval.
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Theorem: Let ρ denote the sum of all paths of length 2 in Q.

Then kF ∼= kQ/〈ρ〉.
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¨
§

¥
¦kF depends only on L.

Therefore, hyperplane arrangements with isomorphic intersection
lattices have isomorphic face semigroup algebras although the face
semigroups need not be isomorphic.
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¨
§

¥
¦kF is a Koszul algebra.

A Koszul algebra is an algebra where the simple modules have
projective resolutions of �this form�.

Therefore,

• The Ext-algebra of kF is the incidence algebra I(L).

• The Ext-algebra of I(L) is kF .
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¨
§

¥
¦Connections with poset cohomology.

� The poset cohomology of L embeds into kF .
� The poset cohomology of every interval of L embeds into kF .
� The Whitney cohomology of L embeds into kF .
� A slight modi�cation to the de�nition of poset cohomology gives a
cohomology ring with a cup product that is isomorphic to kF .
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