Geometry and Algebra of Hyperplane Arrangements

Franco V Saliola

Cornell University
saliola@gmail.com

Hyperplane Arrangements

A hyperplane arrangement \mathcal{A} is a finite set of hyperplanes in \mathbb{R}^{n}.

We'll consider central hyperplane arrangements: all hyperplanes contain $0 \in \mathbb{R}^{n}$.

The Faces \mathcal{F}

The hyperplanes partition \mathbb{R}^{n} into polyhedral sets. The set of faces of these polyhedra are the faces of \mathcal{A}.

Partial order: $f \leq g \Longleftrightarrow f$ is a face of g.
The maximal faces are called chambers.

The Intersection Lattice \mathcal{L}

The intersection lattice \mathcal{L} of \mathcal{A} is the collection of all possible intersections of the hyperplanes in \mathcal{A} ordered by inclusion.

WArning: Others order \mathcal{L} be reverse inclusion!

The Support Map

supp $: \mathcal{F} \rightarrow \mathcal{L}$ sends a face to the linear span of that face.

This is an order-preserving surjection of posets.

A Product on \mathcal{F}

$x y$ is the face you are in by moving a small positive distance along a line from x to y.

Another charaterization: oriented matroid composition.

Some Computations

$$
x^{2}=x
$$

Some Computations

$$
x y x=x y
$$

Some Computations

$c x=c$ for all chambers c

Some Computations

$$
x y=x \text { iff } \operatorname{supp}(y) \leq \operatorname{supp}(x) .
$$

Some Computations

Therefore, supp : $\mathcal{F} \rightarrow \mathcal{L}$ is a homomorphism of semigroups.

The Face Semigroup Algebra

$k \mathcal{F}$ is the set of formal linear combinations of elements of \mathcal{F}

$$
\sum_{x \in \mathcal{F}} \lambda_{x} x
$$

with multiplication defined using the product of \mathcal{F}.

Markov Chains

» A class of Markov chains can be encoded as random walks on the chambers of \mathcal{A}.
» A step in the chain: From c move to $x c$ with probability p_{x}.
» The transition matrix of the Markov chain is the matrix of the linear transformation of left multiplication by

$$
\sum_{x \in \mathcal{F}} p_{x} x
$$

where p_{x} is the probability measure on the faces \mathcal{F}.

The Descent Algebra

» Let W be a finite Coxeter group. Solomon defined a subalgebra of the group algebra $k W$ called the descent algebra of W.
$» W$ is generated by reflections, so the hyperplanes fixed by a reflection of W form a hyperplane arrangement.
$» W$ acts on the faces \mathcal{F}, hence also on the semigroup algebra $k \mathcal{F}$.

Theorem: [Bidigare] The invariant subalgebra $(k \mathcal{F})^{W}$ is isomorphic to Solomon's descent algebra.

Representations of $k \mathcal{F}$

kernel is nilpotent
Π^{k}
(semisimple)
\Longrightarrow Representations are one-dimensional and indexed by $X \in \mathcal{L}$:

$$
\begin{gathered}
\chi_{X}: k \mathcal{F} \rightarrow k \\
\chi_{X}(y)= \begin{cases}1, & \text { if } \operatorname{supp}(y) \leq X, \\
0, & \text { if } \operatorname{supp}(y) \not 又 X .\end{cases}
\end{gathered}
$$

QUIVERS

A quiver Q is a directed graph. The path algebra $k Q$ of a quiver is the k-vector space spanned by the paths of Q with multiplication the composition of paths.

$$
\begin{aligned}
& q \cdot p=q p \\
& p \cdot q=0 \\
& p \cdot r=0 \\
& \circ \cdot \circ=\circ
\end{aligned}
$$

QUIVERS

If all the simple modules of an algebra A are one-dimensional, then there exists a quiver Q and an algebra surjection $k Q \rightarrow A$.

$$
\text { What is the quiver } \mathcal{Q} \text { of } k \mathcal{F} \text { ? }
$$

(The quiver of an algebra is canonical, but the surjection is not.)

Vertices and Arrows of a Quiver

» The vertices and the arrows of Q generate the path algebra $k Q$, so they must map to generators of A.
» The vertices map to idempotents in A.
» The arrows, being nilpotent and generators, map to elements in

$$
\operatorname{rad}(A) / \operatorname{rad}^{2}(A)
$$

» So the number of arrows from X to Y is

$$
\operatorname{dim}_{k}\left(Y \cdot \operatorname{rad}(A) / \operatorname{rad}^{2}(A) \cdot X\right)
$$

Number of Vertices

Idempotents "correspond" to isomorphism classes of simple modules, so the number of vertices of the quiver is the number of isomorphism classes of irreducible representations.

$$
\mathcal{Q}_{0}=\mathcal{L} .
$$

Number of Arrows

The number of arrows $X \rightarrow Y$ is

$$
\operatorname{dim}_{k}\left(Y \cdot \operatorname{rad}(A) / \operatorname{rad}^{2}(A) \cdot X\right)=\operatorname{dim}_{k} \operatorname{Ext}_{k \mathcal{F}}^{1}\left(k_{X}, k_{Y}\right)
$$

where k_{X} is a simple module corresponding to the vertex X.

I Know What You Are Thinking.

Ext?!

What do I need To know about Ext?

To compute $\operatorname{Ext}_{k \mathcal{F}}^{i}\left(k_{X}, k_{Y}\right)$ you need a projective resolution of k_{X}.

A projective resolution is an exact sequence of $k \mathcal{F}$-modules

$$
\cdots \longrightarrow P_{i} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow k_{X} \longrightarrow 0
$$

where the modules P_{i} are projective modules.

We'll use the geometry of the arrangement to construct one.

Projective Resolutions of Simple Modules

» Intersect the arrangement with a sphere centered at the origin.
» The dual cell decomposition of the sphere is a zonotope Z.

» The face poset of Z is the opposite of the face poset of \mathcal{F}.
» Therefore the augmented cellular chain complex of Z can be identified with the sequence
where \mathcal{F}_{p} is the set of codimension p faces in \mathcal{F}.
» This sequence is exact since Z has trivial homology.

$$
\ldots \xrightarrow{(\partial} k \mathcal{F}_{p} \xrightarrow{(0} \cdots \xrightarrow{(\partial} k \mathcal{F}_{0} \xrightarrow{x} k \longrightarrow 0
$$

The boundary operator ∂ is defined by constructing a set of incidence numbers for the faces \mathcal{F}.

- Pick an orientation ϵ_{X} for each subspace $X \in \mathcal{L}$.
- If $x \leq y$, then pick a positively oriented basis $\left\{\overrightarrow{e_{1}}\right\}_{i}$ of $\operatorname{supp}(x)$ and pick a vector \vec{v} in y.
- Define $[x: y]=\epsilon_{X}\left(\overrightarrow{e_{1}}, \ldots, \overrightarrow{e_{r}}, \vec{v}\right)$.

$$
\partial(x)=\sum_{y \gtrdot x}[x: y] y .
$$

Define the action of \mathcal{F} on \mathcal{F}_{p} by

$$
x \cdot y= \begin{cases}x y, & \text { if } \operatorname{supp}(x) \leq \operatorname{supp}(y) \\ 0, & \text { if } \operatorname{supp}(x) \not \leq \operatorname{supp}(y)\end{cases}
$$

Then ∂ is a left $k \mathcal{F}$-module homomoprhism.

For $\chi: k \mathcal{F}_{0} \rightarrow k$ to be a module morphism, we must have

$$
\chi(y)=1 \text { for all } y \in \mathcal{F} .
$$

Some History

This construction was used by Brown and Diaconis to compute the multiplicities of the eigenvalues of the random walk on the chambers of the hyperplane arrangement.

$$
\cdots \xrightarrow{\partial} k \mathcal{F}_{p} \xrightarrow{\partial} \cdots \xrightarrow{\partial} \mathcal{F}_{0} \xrightarrow{\chi} \longrightarrow 0
$$

Observe that $\chi: k \mathcal{F}_{0} \rightarrow k$

$$
\chi(y)=1 \text { for all } y \in \mathcal{F}
$$

is the irreducible representation $\chi_{\mathbb{R}^{n}}: k \mathcal{F} \rightarrow k$

$$
\chi_{\mathbb{R}^{n}}(y)=1 \text { if } \operatorname{supp}(y) \leq \mathbb{R}^{n}
$$

So k is the simple module $k_{\mathbb{R}^{n}}$.

$k \mathcal{F}_{p}$ IS PROJECTIVE!

Fix $x \in \mathcal{F}$ with support X. Define elements

$$
e_{X}=x-\sum_{Y>X} x e_{Y}
$$

They form a complete set of primitive orthogonal idempotents and

$$
x e_{Y}= \begin{cases}x e_{Y}, & \text { if } \operatorname{supp}(x) \leq Y \\ 0, & \text { if } \operatorname{supp}(x) \not \leq Y\end{cases}
$$

This is isomorphic to the action of \mathcal{F} on \mathcal{F}_{p}.

Theorem: The quiver \mathcal{Q} of $k \mathcal{F}$ coincides with the Hasse diagram of \mathcal{L}.

The Relations

For every interval of length two in \mathcal{L} take the sum of all the paths of length that in the interval.

> THEOREM: Let ρ denote the sum of all paths of length 2 in \mathcal{Q}. Then $k \mathcal{F} \cong k \mathcal{Q} /\langle\rho\rangle$.

$$
k \mathcal{F} \text { depends only on } \mathcal{L} .
$$

Therefore, hyperplane arrangements with isomorphic intersection lattices have isomorphic face semigroup algebras although the face semigroups need not be isomorphic.

$k \mathcal{F}$ is a Koszul algebra.

A Koszul algebra is an algebra where the simple modules have projective resolutions of "this form".

Therefore,

- The Ext-algebra of $k \mathcal{F}$ is the incidence algebra $I(\mathcal{L})$.
- The Ext-algebra of $I(\mathcal{L})$ is $k \mathcal{F}$.

Connections with poset cohomology.

» The poset cohomology of \mathcal{L} embeds into $k \mathcal{F}$.
» The poset cohomology of every interval of \mathcal{L} embeds into $k \mathcal{F}$.
» The Whitney cohomology of \mathcal{L} embeds into $k \mathcal{F}$.
»A slight modification to the definition of poset cohomology gives a cohomology ring with a cup product that is isomorphic to $k \mathcal{F}$.

