GEOMETRY AND ALGEBRA OF HYPERPLANE ARRANGEMENTS

Franco V Saliola Cornell University saliola@gmail.com

We'll consider *central* hyperplane arrangements: all hyperplanes contain $0 \in \mathbb{R}^n$.

The Intersection Lattice \mathcal{L}

The *intersection lattice* \mathcal{L} of \mathcal{A} is the collection of all possible intersections of the hyperplanes in \mathcal{A} ordered by *inclusion*.

WARNING: Others order \mathcal{L} be *reverse* inclusion!

THE FACE SEMIGROUP ALGEBRA

 $k\mathcal{F}$ is the set of formal linear combinations of elements of \mathcal{F}

$$\sum_{x \in \mathcal{F}} \lambda_x x$$

with multiplication defined using the product of \mathcal{F} .

Markov Chains

» A class of Markov chains can be encoded as random walks on the chambers of \mathcal{A} .

» A step in the chain: From c move to xc with probability p_x .

» The transition matrix of the Markov chain is the matrix of the linear transformation of left multiplication by

$$\sum_{x \in \mathcal{F}} p_x x_y$$

where p_x is the probability measure on the faces \mathcal{F} .

The Descent Algebra

» Let W be a finite Coxeter group. Solomon defined a subalgebra of the group algebra kW called the *descent algebra* of W.

» W is generated by reflections, so the hyperplanes fixed by a reflection of W form a hyperplane arrangement.

» W acts on the faces \mathcal{F} , hence also on the semigroup algebra $k\mathcal{F}$.

THEOREM: [Bidigare] The invariant subalgebra $(k\mathcal{F})^W$ is isomorphic to Solomon's descent algebra.

QUIVERS

A quiver Q is a directed graph. The path algebra kQ of a quiver is the k-vector space spanned by the paths of Q with multiplication the composition of paths.

 $q \cdot p = qp$ $p \cdot q = 0$ $p \cdot r = 0$ $\circ \cdot \circ = \circ$

If all the simple modules of an algebra A are one-dimensional, then there exists a quiver Q and an algebra surjection $kQ \to A$.

What is the quiver \mathcal{Q} of $k\mathcal{F}$?

(The quiver of an algebra is canonical, but the surjection is not.)

VERTICES AND ARROWS OF A QUIVER

- » The vertices and the arrows of Q generate the path algebra kQ, so they must map to generators of A.
- » The vertices map to idempotents in A.
- » The arrows, being nilpotent and generators, map to elements in $\operatorname{rad}(A)/\operatorname{rad}^2(A)$.
- $\ > \ {\rm So}$ the number of arrows from X to Y is

 $\dim_k \left(Y \cdot \operatorname{rad}(A) / \operatorname{rad}^2(A) \cdot X \right).$

NUMBER OF VERTICES

Idempotents "correspond" to isomorphism classes of simple modules, so the number of vertices of the quiver is the number of isomorphism classes of irreducible representations.

$$Q_0 = \mathcal{L}.$$

NUMBER OF ARROWS

The number of arrows $X \to Y$ is

 $\dim_k \left(Y \cdot \operatorname{rad}(A) / \operatorname{rad}^2(A) \cdot X \right) = \dim_k \operatorname{Ext}^1_{k\mathcal{F}}(k_X, k_Y),$

where k_X is a simple module corresponding to the vertex X.

I KNOW WHAT YOU ARE THINKING.

What do I need to know about Ext?

To compute $\operatorname{Ext}_{k\mathcal{F}}^{i}(k_{X}, k_{Y})$ you need a projective resolution of k_{X} .

A projective resolution is an exact sequence of $k\mathcal{F}$ -modules

$$\cdots \longrightarrow P_i \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow k_X \longrightarrow 0$$

where the modules P_i are projective modules.

We'll use the *geometry* of the arrangement to construct one.

» Therefore the augmented cellular chain complex of Z can be identified with the sequence

$$\cdots \xrightarrow{\partial} k\mathcal{F}_p \xrightarrow{\partial} \cdots \xrightarrow{\partial} k\mathcal{F}_0 \xrightarrow{\chi} k \longrightarrow 0,$$

where \mathcal{F}_p is the set of codimension p faces in \mathcal{F} .

» This sequence is exact since Z has trivial homology.

$$\overbrace{\cdots \longrightarrow k\mathcal{F}_p \longrightarrow \cdots \longrightarrow k\mathcal{F}_0 \longrightarrow k\mathcal{F}_0 \longrightarrow k\mathcal{F}_0}^{\chi} \xrightarrow{\chi} k \longrightarrow 0$$

The boundary operator ∂ is defined by constructing a set of *incidence numbers* for the faces \mathcal{F} .

- Pick an orientation ϵ_X for each subspace $X \in \mathcal{L}$.
- If $x \leq y$, then pick a positively oriented basis $\{\vec{e_1}\}_i$ of $\operatorname{supp}(x)$ and pick a vector \vec{v} in y.

• Define
$$[x:y] = \epsilon_X(\vec{e_1}, \dots, \vec{e_r}, \vec{v}).$$

$$\partial(x) = \sum_{y \geqslant x} [x:y]y.$$

$$\left(\cdots \longrightarrow k\mathcal{F}_p \longrightarrow \cdots \longrightarrow k\mathcal{F}_0 \longrightarrow k \longrightarrow 0\right)$$

Define the action of \mathcal{F} on \mathcal{F}_p by

$$x \cdot y = \begin{cases} xy, & \text{if } \operatorname{supp}(x) \leq \operatorname{supp}(y) \\ 0, & \text{if } \operatorname{supp}(x) \not\leq \operatorname{supp}(y). \end{cases}$$

Then ∂ is a left $k\mathcal{F}$ -module homomorphism.

$$\overbrace{\cdots \longrightarrow \partial k\mathcal{F}_p \longrightarrow \cdots \longrightarrow \partial k\mathcal{F}_0 \xrightarrow{\chi} k \longrightarrow 0} k\mathcal{F}_0 \longrightarrow k \xrightarrow{\chi} k \xrightarrow{\chi} 0$$

For $\chi : k\mathcal{F}_0 \to k$ to be a module morphism, we must have
 $\chi(y) = 1$ for all $y \in \mathcal{F}$.

Some History

This construction was used by Brown and Diaconis to compute the multiplicities of the eigenvalues of the random walk on the chambers of the hyperplane arrangement.

$$\overbrace{\cdots \longrightarrow k\mathcal{F}_{p} \longrightarrow \cdots \longrightarrow k\mathcal{F}_{0} \xrightarrow{\chi} k \longrightarrow 0}} \xrightarrow{\chi} k \xrightarrow{\chi} k \longrightarrow 0$$
Observe that $\chi : k\mathcal{F}_{0} \rightarrow k$
 $\chi(y) = 1$ for all $y \in \mathcal{F}$
is the irreducible representation $\chi_{\mathbb{R}^{n}} : k\mathcal{F} \rightarrow k$
 $\chi_{\mathbb{R}^{n}}(y) = 1$ if $\operatorname{supp}(y) \leq \mathbb{R}^{n}$.
So k is the simple module $k_{\mathbb{R}^{n}}$.

$k\mathcal{F}_p$ is Projective!

$$\left(\cdots \xrightarrow{\partial} \left(k\mathcal{F}_p \right) \xrightarrow{\partial} \cdots \xrightarrow{\partial} \left(k\mathcal{F}_0 \right) \xrightarrow{\chi} k \longrightarrow 0 \right)$$

Fix $x \in \mathcal{F}$ with support X. Define elements

$$e_X = x - \sum_{Y > X} x e_Y.$$

They form a complete set of primitive orthogonal idempotents and

$$xe_Y = \begin{cases} xe_Y, & \text{if } \operatorname{supp}(x) \le Y, \\ 0, & \text{if } \operatorname{supp}(x) \not\le Y. \end{cases}$$

This is isomorphic to the action of \mathcal{F} on \mathcal{F}_p .

 $k\mathcal{F}$ depends only on \mathcal{L} .

Therefore, hyperplane arrangements with isomorphic intersection lattices have isomorphic face semigroup algebras although the face semigroups need not be isomorphic. $k\mathcal{F}$ is a Koszul algebra.

A *Koszul algebra* is an algebra where the simple modules have projective resolutions of "this form".

Therefore,

- The Ext-algebra of $k\mathcal{F}$ is the incidence algebra $I(\mathcal{L})$.
- The Ext-algebra of $I(\mathcal{L})$ is $k\mathcal{F}$.

Connections with poset cohomology.

- » The poset cohomology of \mathcal{L} embeds into $k\mathcal{F}$.
- » The poset cohomology of every interval of \mathcal{L} embeds into $k\mathcal{F}$.
- » The Whitney cohomology of \mathcal{L} embeds into $k\mathcal{F}$.

» A slight modification to the definition of *poset cohomology* gives a cohomology ring with a cup product that is isomorphic to $k\mathcal{F}$.