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HYPERPLANE ARRANGEMENTS .

A hyperplane arrangement A is a finite set of hyperplanes in R".

We’ll consider central hyperplane arrangements: all hyperplanes
contain 0 € R™.
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/ THE FACES F ' \

The hyperplanes partition R™ into polyhedral sets. The set of faces
of these polyhedra are the faces of A.

Partial order: f < g <= f is a face of g.

KThe maximal faces are called chamobers. /
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THE INTERSECTION LATTICE E'

The intersection lattice L of A is the collection of all possible

intersections of the hyperplanes in A ordered by inclusion.

X Y R™

A X Y

WARNING: Others order L be reverse inclusion!
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THE SUPPORT MAP.

supp : F — L sends a face to the linear span of that face.

> R"

This is an order-preserving surjection of posets.
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A PRODUCT ON ]—"'

xy is the face you are in by moving a small positive distance along

a line from x to y.

Another charaterization: oriented matroid composition.
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SOME COMPUTATIONSI




SOME COMPUTATIONS'

TYT = TY




SOME COMPUTATIONSI

cx = c for all chambers ¢




SOME COMPUTATIONS.

[:L’y = z iff supp(y) < SUPP(CU)-]
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SOME COMPUTATIONS'

(supp(zy) = supp(z) V supp(y). |

\ Therefore, supp : 7 — L is a homomorphism of semigroups. /
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THE FACE SEMIGROUP ALGEBRA.

kJF is the set of formal linear combinations of elements of F
>
xeF

with multiplication defined using the product of F.

.
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MARKOV CHAINS.

» A class of Markov chains can be encoded as random walks on the
chambers of A.

» A step in the chain: From ¢ move to xc with probability p..

» The transition matrix of the Markov chain is the matrix of the

linear transformation of left multiplication by

S o

xeF

where p,. is the probability measure on the faces F.

\_ /
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THE DESCENT ALGEBRA'

» Let W be a finite Coxeter group. Solomon defined a subalgebra of

the group algebra kW called the descent algebra of W.

» W is generated by reflections, so the hyperplanes fixed by a
reflection of W form a hyperplane arrangement.

» W acts on the faces F, hence also on the semigroup algebra kF.

THEOREM: |Bidigare| The invariant subalgebra (kF)"W
is isomorphic to Solomon’s descent algebra.

\_ /
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REPRESENTATIONS OF kF .

supp : kF — kL

/

kernel is nilpotent H k

(semisimple)

112

—> Representations are one-dimensional and indexed by X € L:
Xx :kF — k

1, if supp(y) < X,
xx(y) = ,
0, if supp(y) £ X.
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/ (QUIVERS I \

A quiver @ is a directed graph. The path algebra k() of a quiver is
the k-vector space spanned by the paths of () with multiplication

the composition of paths.

(@)
p T
q-p = (gp
p-q=0
@) (@)
p-r=20
O
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4 N
(QUIVERS I

If all the simple modules of an algebra A are one-dimensional, then

there exists a quiver () and an algebra surjection £Q) — A.

(What is the quiver Q of kF?)

(The quiver of an algebra is canonical, but the surjection is not.)

\_ /
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VERTICES AND ARROWS OF A QUIVERI

» The vertices and the arrows of () generate the path algebra kQ),

so they must map to generators of A.
» The vertices map to idempotents in A.

» The arrows, being nilpotent and generators, map to elements in

rad(A)/rad®(A).

» So the number of arrows from X to Y is

dimy, (Y - rad(4)/ rad®(A) - X).

\_ /

18




NUMBER OF VERTICESI

Idempotents “correspond” to isomorphism classes of simple
modules, so the number of vertices of the quiver is the number of
isomorphism classes of irreducible representations.

(Qo = E.J
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NUMBER OF ARROWS'

The number of arrows X — Y is
dimy, (Y - rad(A)/ rad?(A) - X) = dimy, Exty, 2 (kx, ky),

where kx is a simple module corresponding to the vertex X.

\_
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I KNOW WHAT YOU ARE THINKING.
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Ext?!




WHAT DO I NEED TO KNOW ABOUT Ext?.

To compute Ext} ~(kx, ky) you need a projective resolution of kx.

A projective resolution is an exact sequence of kF-modules
—P,— e — P — Py — kx —0

1

where the modules P; are projective modules.

We’ll use the geometry of the arrangement to construct one.

\_ /
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PROJECTIVE RESOLUTIONS OF SIMPLE MODULESI

» Intersect the arrangement with a sphere centered at the origin.

» The dual cell decomposition of the sphere is a zonotope Z.

» The face poset of Z is the opposite of the face poset of F.

\_

~
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» Therefore the augmented cellular chain complex of Z can be
identified with the sequence

[ I R R R O,J

where F), is the set of codimension p faces in F.

» This sequence is exact since Z has trivial homology.

\_
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4 N

0 0 0 X
i —— kF, —— o —— kFg —— k —— 0

The boundary operator 0 is defined by constructing a set of
incidence numbers for the faces F.

e Pick an orientation €x for each subspace X € L.

e If x <y, then pick a positively oriented basis {€7 }; of supp(z)
and pick a vector ¥ in y.

e Define [z : y] = ex(é1,..., €, ).
O(x) =) [x:yly
Yy>x

\_ /
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4 N

Define the action of F on F, by

xy, if supp(z) < supp(y)

Ty = .
0, if supp(z) £ supp(y).

Then 0 is a left £F-module homomoprhism.

\_ /
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For x : kFo — k to be a module morphism, we must have

x(y) =1for all y € F.
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SOME HISTORYI

This construction was used by Brown and Diaconis to compute the
multiplicities of the eigenvalues of the random walk on the
chambers of the hyperplane arrangement.

\_ /
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0 0 0 X
[. . _ kfp _— o o o _— kfo _—

Observe that x : kFy — k
x(y)=1forally e F

is the irreducible representation ygrn~ : kF — k

xrn (y) = 1 if supp(y) < R".

So | k | is the simple module kg~.
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kF, 13 PROJECTIVE! I

Fix x € F with support X. Define elements

eEx — I — E TEy .

Y>X

They form a complete set of primitive orthogonal idempotents and

ey, if Supp(af) < Y7
0, if supp(z) £Y.

ey —

This is isomorphic to the action of F on F,,.

\_ /
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THEOREM: The quiver @ of kF coincides with the
Hasse diagram of L.

/\\ /
\\/ .

~
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THE RELATIONS.

For every interval of length two in £ take the sum of all the paths

of length that in the interval.

.
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HEOREM: Let p denote the sum of all paths of length 2 in

Then kF = kQ/(p).

)

~

/
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(kF depends only on L.

Therefore, hyperplane arrangements with isomorphic intersection
lattices have isomorphic face semigroup algebras although the face
semigroups need not be isomorphic.

- /
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[k]: is a Koszul algebm.]

A Koszul algebra is an algebra where the simple modules have
projective resolutions of “this form”.

Therefore,
e The Ext-algebra of kF is the incidence algebra I(L).
e The Ext-algebra of I(L) is kF.

\_
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[Connections with poset cohomology.]

» The poset cohomology of L embeds into kF.

» The poset cohomology of every interval of £ embeds into kF.

» The Whitney cohomology of £ embeds into kF.

» A slight modification to the definition of poset cohomology gives a

cohomology ring with a cup product that is isomorphic to kF.

\_
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