

Some very cool things about Sage
Or, why I am excited about Sage

Franco V. Saliola
〈saliola@gmail.com〉

Laboratoire de Combinatoire et d’Informatique Mathématique
Université du Québec à Montréal

LaCIM Seminar
7 March 2008

Sage is a distribution of open-source software.

Software included with Sage :

ATLAS Automatically Tuned Linear Algebra Software

BLAS Basic Fortan 77 linear algebra routines

Bzip2 High-quality data compressor

Cddlib Double Description Method of Motzkin

Common Lisp Multi-paradigm and general-purpose programming lang.

CVXOPT Convex optimization, linear programming, least squares

Cython C-Extensions for Python

F2c Converts Fortran 77 to C code

Flint Fast Library for Number Theory

FpLLL Euclidian lattice reduction

FreeType A Free, High-Quality, and Portable Font Engine

Sage is a distribution of open-source software.

Software included with Sage :

ATLAS Automatically Tuned Linear Algebra Software

BLAS Basic Fortan 77 linear algebra routines

Bzip2 High-quality data compressor

Cddlib Double Description Method of Motzkin

Common Lisp Multi-paradigm and general-purpose programming lang.

CVXOPT Convex optimization, linear programming, least squares

Cython C-Extensions for Python

F2c Converts Fortran 77 to C code

Flint Fast Library for Number Theory

FpLLL Euclidian lattice reduction

FreeType A Free, High-Quality, and Portable Font Engine

Sage is a distribution of open-source software.

Software included with Sage :

G95 Open source Fortran 95 compiler

GAP Groups, Algorithms, Programming

GD Dynamic graphics generation tool

Genus2reduction Curve data computation

Gfan Gröbner fans and tropical varieties

Givaro C++ library for arithmetic and algebra

GMP GNU Multiple Precision Arithmetic Library

GMP-ECM Elliptic Curve Method for Integer Factorization

GNU TLS Secure networking

GSL Gnu Scientific Library

JsMath JavaScript implementation of LaTeX

Sage is a distribution of open-source software.

Software included with Sage :

IML Integer Matrix Library

IPython Interactive Python shell

LAPACK Fortan 77 linear algebra library

Lcalc L-functions calculator

Libgcrypt General purpose cryptographic library

Libgpg-error Common error values for GnuPG components

Linbox C++ linear algebra library

Matplotlib Python plotting library

Maxima computer algebra system

Mercurial Revision control system

MoinMoin Wiki

Sage is a distribution of open-source software.

Software included with Sage :

MPFI Multiple Precision Floating-point Interval library

MPFR C library for multiple-precision floating-point computations

ECLib Cremona’s Programs for Elliptic curves

NetworkX Graph theory

NTL Number theory C++ library

Numpy Numerical linear algebra

OpenCDK Open Crypto Development Kit

PALP A Package for Analyzing Lattice Polytopes

PARI/GP Number theory calculator

Pexpect Pseudo-tty control for Python

PNG Bitmap image support

Sage is a distribution of open-source software.

Software included with Sage :

PolyBoRi Polynomials Over Boolean Rings

PyCrypto Python Cryptography Toolkit

Python Interpreted language

Qd Quad-double/Double-double Computation Package

R Statistical Computing

Readline Line-editing

Rpy Python interface to R

Scipy Python library for scientific computation

Singular fast commutative and noncommutative algebra

Scons Software construction tool

SQLite Relation database

Sage is a distribution of open-source software.

Software included with Sage :

Sympow L-function calculator

Symmetrica Representation theory

Sympy Python library for symbolic computation

Tachyon lightweight 3d ray tracer

Termcap for writing portable text mode applications

Twisted Python networking library

Weave Tools for including C/C++ code within Python

Zlib Data compression library

ZODB Object-oriented database

Plus additional optional packages

Sage is a distribution of open-source software.

Software included with Sage :

Sympow L-function calculator

Symmetrica Representation theory

Sympy Python library for symbolic computation

Tachyon lightweight 3d ray tracer

Termcap for writing portable text mode applications

Twisted Python networking library

Weave Tools for including C/C++ code within Python

Zlib Data compression library

ZODB Object-oriented database

Plus additional optional packages

Sage is a distribution of mathematics software.

Sage’s mission: “Creating a viable, free, open-source alternative to
MagmaTM, MapleTM, MathematicaTM, and MatlabTM.”

Algebra GAP, Maxima, Singular
Algebraic Geometry Singular, Macaulay2

Arbitrary Precision Arithmetic GMP, MPFR, MPFI, NTL, . . .
Arithmetic Geometry PARI, NTL, mwrank, ecm, . . .

Calculus Maxima, Sympy
Combinatorics Symmetrica, MuPAD-Combinat∗

Exact Linear Algebra Linbox, IML
Graph Theory NetworkX

Graphics MatPlotLib, Tachyon3d
Group theory GAP

Numerical Linear Algebra GSL, Scipy, Numpy

Sage is a distribution of mathematics software.

Sage’s mission: “Creating a viable, free, open-source alternative to
MagmaTM, MapleTM, MathematicaTM, and MatlabTM.”

Algebra GAP, Maxima, Singular
Algebraic Geometry Singular, Macaulay2

Arbitrary Precision Arithmetic GMP, MPFR, MPFI, NTL, . . .
Arithmetic Geometry PARI, NTL, mwrank, ecm, . . .

Calculus Maxima, Sympy
Combinatorics Symmetrica, MuPAD-Combinat∗

Exact Linear Algebra Linbox, IML
Graph Theory NetworkX

Graphics MatPlotLib, Tachyon3d
Group theory GAP

Numerical Linear Algebra GSL, Scipy, Numpy

Sage is a distribution of free, open-source software.

“You can read Sylow’s Theorem and its proof in
Huppert’s book in the library . . . then you can use
Sylow’s Theorem for the rest of your life free of charge,
but for many computer algebra systems license fees have
to be paid regularly

With this situation two of the most basic rules of
conduct in mathematics are violated: In mathematics
information is passed on free of charge and everything is

laid open for checking.”

— J. Neubüser (1993)

(started GAP in 1986)

Sage is a distribution of free, open-source software.

“You can read Sylow’s Theorem and its proof in
Huppert’s book in the library . . . then you can use
Sylow’s Theorem for the rest of your life free of charge,
but for many computer algebra systems license fees have
to be paid regularly

With this situation two of the most basic rules of
conduct in mathematics are violated: In mathematics
information is passed on free of charge and everything is

laid open for checking.”

— J. Neubüser (1993)

(started GAP in 1986)

Sage is a distribution of free, open-source software.

“You can read Sylow’s Theorem and its proof in
Huppert’s book in the library . . . then you can use
Sylow’s Theorem for the rest of your life free of charge,
but for many computer algebra systems license fees have
to be paid regularly

With this situation two of the most basic rules of
conduct in mathematics are violated: In mathematics
information is passed on free of charge and everything is

laid open for checking.”

— J. Neubüser (1993)

(started GAP in 1986)

Sage is a distribution of free, open-source software.

You have the freedom:

to run the program, for any purpose.

to study how the program works, and adapt it to your needs.

to redistribute copies so you can help your neighbour.

to improve the program, and release your improvements to the
public, so that the whole community benefits.

Also, you don’t have to pay for it.

Sage is a distribution of free, open-source software.

You have the freedom:

to run the program, for any purpose.

to study how the program works, and adapt it to your needs.

to redistribute copies so you can help your neighbour.

to improve the program, and release your improvements to the
public, so that the whole community benefits.

Also, you don’t have to pay for it.

The Sage programming language is Python

Python is a powerful, modern, interpreted programming-language.

Interpreted means it works like Maple or Mathematica.

python: x = 17
python: x
17
python: x**2
289

It’s easy to learn. Lots of free documentation.

http://diveintopython.org/
http://docs.python.org/tut/

The Sage programming language is Python

Python is a powerful, modern, interpreted programming-language.

Interpreted means it works like Maple or Mathematica.

python: x = 17
python: x
17
python: x**2
289

It’s easy to learn. Lots of free documentation.

http://diveintopython.org/
http://docs.python.org/tut/

The Sage programming language is Python

Python is a powerful, modern, interpreted programming-language.

Interpreted means it works like Maple or Mathematica.

python: x = 17
python: x
17
python: x**2
289

It’s easy to learn. Lots of free documentation.

http://diveintopython.org/
http://docs.python.org/tut/

The Sage programming language is Python

It’s easy to read and write.{
17x

∣∣∣ x ∈ {0, 1, . . . , 9} and x is odd
}

python: [17*x for x in range(0,10) if x%2 == 1]

Lots of Python libraries: databases, graphics, networking, . . .

It is easy to use C/C++ libraries from within Python.

Cython: Python code −→ compiled C code.

The Sage programming language is Python

It’s easy to read and write.{
17x

∣∣∣ x ∈ {0, 1, . . . , 9} and x is odd
}

python: [17*x for x in range(0,10) if x%2 == 1]

Lots of Python libraries: databases, graphics, networking, . . .

It is easy to use C/C++ libraries from within Python.

Cython: Python code −→ compiled C code.

The Sage programming language is Python

It’s easy to read and write.{
17x

∣∣∣ x ∈ {0, 1, . . . , 9} and x is odd
}

python: [17*x for x in range(0,10) if x%2 == 1]

Lots of Python libraries: databases, graphics, networking, . . .

It is easy to use C/C++ libraries from within Python.

Cython: Python code −→ compiled C code.

The Sage programming language is Python

It’s easy to read and write.{
17x

∣∣∣ x ∈ {0, 1, . . . , 9} and x is odd
}

python: [17*x for x in range(0,10) if x%2 == 1]

Lots of Python libraries: databases, graphics, networking, . . .

It is easy to use C/C++ libraries from within Python.

Cython: Python code −→ compiled C code.

The Sage programming language is Python

It’s easy to read and write.{
17x

∣∣∣ x ∈ {0, 1, . . . , 9} and x is odd
}

python: [17*x for x in range(0,10) if x%2 == 1]

Lots of Python libraries: databases, graphics, networking, . . .

It is easy to use C/C++ libraries from within Python.

Cython: Python code −→ compiled C code.

The Sage programming language is Python

“Google has made no secret of the fact they use Python
a lot for a number of internal projects. Even knowing
that, once I was an employee, I was amazed at how much
Python code there actually is in the Google source code
system.”

— Guido van Rossum

(creator of Python)

Several ways to use Sage

A library for Python scripts.

#!/usr/bin/env sage -python

import sys
from sage.all import *

Several ways to use Sage

Command line interface.

| SAGE Version 2.10.1, Release Date: 2008-02-02 |

| Type notebook() for the GUI, and license() for information. |

sage: 17^2

289

sage: |

Several ways to use Sage
Graphical notebook: online at sagenb.org

Sage plays well with LATEX

LATEX input:

\begin{sagesilent}
var(’s t’)
f = t^2*e^t-sin(t)

\end{sagesilent}

Let $f(t)=\sage{f}$. Then the Laplace tranform
of f is: $\sage{f.laplace(t,s)}$.

LATEX output:

Let f(t) = t2et − sin (t) . Then the Laplace tranform of
f is: 2

(s−1)3
− 1

s2+1
.

Sage plays well with LATEX

LATEX input:

\begin{sagesilent}
var(’s t’)
f = t^2*e^t-sin(t)

\end{sagesilent}

Let $f(t)=\sage{f}$. Then the Laplace tranform
of f is: $\sage{f.laplace(t,s)}$.

LATEX output:

Let f(t) = t2et − sin (t) . Then the Laplace tranform of
f is: 2

(s−1)3
− 1

s2+1
.

Sage plays well with LATEX
LATEX input:

Here is an example of a tree:
\sageplot{Graph({0:[1,2,3], 2:[5]}).plot()}

LATEX output:

Here is an example of a tree:

Sage plays well with LATEX
LATEX input:

Here is an example of a tree:
\sageplot{Graph({0:[1,2,3], 2:[5]}).plot()}

LATEX output:

Here is an example of a tree:

Sage plays well with LATEX
LATEX input:

\sageplot{plot(-x^3+3*x^2+7*x-4,-5,5)}

LATEX output:

Sage plays well with LATEX
LATEX input:

\sageplot{plot(-x^3+3*x^2+7*x-4,-5,5)}

LATEX output:

Sage plays well with LATEX

LATEX input:

\begin{sagesilent}

t6 = Tachyon(camera_center=(0,-4,1), xres = 800, yres = 600, \

raydepth = 12, aspectratio=.75, antialiasing = True)

t6.light((0.02,0.012,0.001), 0.01, (1,0,0))

t6.light((0,0,10), 0.01, (0,0,1))

t6.texture(’s’, color = (.8,1,1), opacity = .9, specular = .95, \

diffuse = .3, ambient = 0.05)

t6.texture(’p’, color = (0,0,1), opacity = 1, specular = .2)

t6.sphere((-1,-.57735,-0.7071),1,’s’)

t6.sphere((1,-.57735,-0.7071),1,’s’)

t6.sphere((0,1.15465,-0.7071),1,’s’)

t6.sphere((0,0,0.9259),1,’s’)

t6.plane((0,0,-1.9259),(0,0,1),’p’)

\end{sagesilent}

\sageplot{t6}

Sage plays well with LATEX

LATEX output:

The Sage community

Many people have contributed to Sage (directly & indirectly).

There are several mailing lists.

http://www.sagemath.org

IRC: #sage-devel on freenode.org.

Developers are very friendly and helpful.

Let’s use Sage

Let’s use Sage

Demo 0: Get help.

Start typing, then hit TAB.

CommandName? for documentation and examples.

CommandName?? for docs, examples and source code.

Let’s use Sage

Demo 1: Interfaces.

sage: %maple

--> Switching to Maple <--

maple: f := x -> x^2
f := proc (x) options operator, arrow; x^2 end proc
maple: D(f)(x)
2*x
maple: exit

--> Exiting back to SAGE <--

sage:

Let’s use Sage

Demo 1: Interfaces.

sage: %gap

--> Switching to Gap <--

gap: s8 := Group((1,2), (1,2,3,4,5,6,7,8))
Group([(1,2), (1,2,3,4,5,6,7,8)])
gap: a8 := DerivedSubgroup(s8)
Group([(1,2,3), (2,3,4), (2,4)(3,5), (2,6,4), (2,4)(5,7), (2,8,6,4)(3,5)])
gap: Size(a8); IsAbelian(a8); IsPerfect(a8)
20160
false
true

Let’s use Sage

Demo 2: String manipulation

Let P0 = {} and Pn = PowerSet(Pn−1).

Examples:

P1 = {{}}
P2 = {{{}} , {}}
P3 = {{{{}} , {}} , {} , {{}} , {{{}}}}

We want the words obtained from the elements in Pn

by replacing each { with a and each } with b.

Examples:

P1 7→ [ab] .
P2 7→ [ab, aabb] .
P3 7→ [ab, aabb, aaabbb, aaabbabb] .

Let’s use Sage

Import a module (library)

import string

Define a function to generate the sets

def P(n):

if n == 0:

return Set([])

else:

return Subsets(P(n-1))

Define a function to the replacing.

f = lambda x : str(x).translate(string.maketrans(’{}’,’ab’),’, ’)

Do a list comprehension to combine them.

words = lambda n : [f(x) for x in P(n)]

Let’s use Sage

Demo 3: Sloane

sage: seqs = sloane_find([1,1,2,3,5,8,13],1)
sage: for x in seqs:
....: print x[1]
Fibonacci numbers: F(n) = F(n-1) + F(n-2), F(0) = 0,
F(1) = 1, F(2) = 1, ...

Let’s use Sage

Demo 4: Play with Partitions

Set of Partitons

P = Partitions(6)
P.list()
P.count()
P.<tab>

individual partitons

nu = Partitions(6).random(); nu
nu = Partition([3,2,2,1])
print nu.ferrers_diagram()
nu.hook_lengths()
nu.conjugate()
nu.hook_product(x)
nu.hook_product(1)
nu.<tab>

Let’s use Sage
Demo 5: Play with Symmetric Functions

Help: SymmetricFunctionAlgebra?

Power basis:
p = SymmetricFunctionAlgebra(QQ, basis=’power’); p

Expand: p([3]).expand(4)

Elementary basis: e = SFAElementary(QQ)

Monomial basis: m = SFAMonomial(QQ)

Homogeneous basis: h = SFAHomogeneous(QQ)

Schur basis: s = SFASchur(QQ)

Dual basis: m.dual_basis() is h

Omega: m([2,2,1]).omega()

Change of basis: m(h([3]))

Change of basis matrix: h.transition_matrix(m,4)

Plethysm: s([3])(s([3,2]))

Let’s use Sage++

Demo 6: Play with Jack and Macdonald Polynomials

sage: H = MacdonaldPolynomialsH(QQ); H
sage: s = SFASchur(H.base_ring()); s
sage: s(H([2]))
sage: _.expand(3)
sage: J = JackPolynomialsJ(QQ,t=1); J
sage: s = SFASchur(J.base_ring()); s
sage: nu = Partitions(7).random(); nu
sage: J(nu)
sage: s(J([3,2,2,1]))
sage: nu.hook_product(1)

Let’s use Sage++

Demo 7: Manipulate

sage: @manipulate
sage: def _(a=(0,1)):
....: x,y = var(’x,y’)
....: show(plot3d(sin(x*cos(y*a)), \
....: (x,0,5), (y,0,5)), figsize=4)

Let’s use Sage++

Demo 8: Posets

sage: P = Poset([[1,2],[4],[3],[4],[]]); P
sage: P.antichains()
sage: P.show()
sage: P.is_meet_semilattice()
sage: P.is_graded()
sage: Pi = PosetOfIntegerPartitions(5); Pi
sage: Pi.show()
sage: B = BooleanLattice(5); B
sage: B.show()
sage: PosetOfRestrictedIntegerPartitions(7).show()

Let’s use Sage

Demo 9: Rubik’s cube

sage: C = RubiksCube().scramble()
sage: C.show()
sage: C.show3d()
sage: C.solve()

Let’s use Sage

Demo 10: Linear Algebra & Sudoku Solver

sage: A = matrix(ZZ,9,[5,0,0, 0,8,0, 0,4,9, \
0,0,0, 5,0,0, 0,3,0, \
0,6,7, 3,0,0, 0,0,1, \
1,5,0, 0,0,0, 0,0,0, \
0,0,0, 2,0,8, 0,0,0, \
0,0,0, 0,0,0, 0,1,8, \
7,0,0, 0,0,4, 1,5,0, \
0,3,0, 0,0,2, 0,0,0, \
4,9,0, 0,5,0, 0,0,3]); A

sage: A.determinant()
sage: A.minpoly()
sage: sudoku(A)

