
05 - Introduction to Cython

Introduction to Cython
Cython is a programming language specially designed for writing
Python extension modules. It’s designed to bridge the gap between the
nice, high-level, easy-to-use world of Python and the messy, low-level
world of C.

A Python function

Consider the following Python function that outputs a list of the first m
prime numbers. (This is not exactly a Cython example, but it will be
useful for comparisons.)

def first_primes_python(m):
 primes_list = []
 n = 2
 while len(primes_list) < m:
 n_is_prime = True
 for p in primes_list:
 if n % p == 0:
 n_is_prime = False
 break
 if n_is_prime == True:
 primes_list.append(n)
 n = n + 1
 return primes_list

To time a function in Python, use the time command.

time p = first_primes_python(5000)

 CPU time: 6.47 s, Wall time: 6.52 s

First steps with Cython

To Cythonize a function, just add %cython as the first line in the notebook

Sage Worksheet: 05 - Introduction to Cython http://localhost:8000/home/admin/19/print

1 of 3 27/11/08 09:22 PM

cell.

The Sage notebook will take the contents of this cell, convert it to Cython,
compile it, and load the resulting function.

%cython
def first_primes_cython_v1(m):
 primes_list = []
 n = 2
 while len(primes_list) < m:
 n_is_prime = True
 for p in primes_list:
 if n % p == 0:
 n_is_prime = False
 break
 if n_is_prime == True:
 primes_list.append(n)
 n = n + 1
 return primes_list

 __home_sal...19_code_sage5_spyx.c __home_sal...code_sage5_spyx.html

Note the speed up we obtained by just adding %cython:

time p = first_primes_cython_v1(5000)

 CPU time: 0.89 s, Wall time: 0.90 s

time p = first_primes_cython_v1(10000)

 CPU time: 3.19 s, Wall time: 3.23 s

More Cython

Note that two links were returned above. The first one is a link to the C
source code file created by Cython from our function. Go take a look. The
conversion is a nontrivial process.

The second link above is an html page that identifies Python-to-C and
C-to-Python conversions that are taking place. By minimizing such
conversions and declaring data types, we can further improve the speed
of our function.

Below, some object type declarations are made, we simplify some of the

Sage Worksheet: 05 - Introduction to Cython http://localhost:8000/home/admin/19/print

2 of 3 27/11/08 09:22 PM

loops and we use a C array instead of the Python list primes_list. But
since we want to return the data as a Python list, we convert to a Python
list at the end.

%cython
def first_primes_v3(int m):
 cdef int c_array[100000]
 cdef int k = 0
 cdef int n = 2
 cdef int i, n_is_prime
 while k < m:
 n_is_prime = 0
 i = 0
 while i < k:
 if n % c_array[i] == 0:
 n_is_prime = 1
 break
 i = i + 1
 if n_is_prime == 0:
 c_array[k] = n
 k = k+1
 n = n + 1
 primes_list = []
 i = 0
 while i < k:
 primes_list.append(c_array[i])
 i = i+1
 return primes_list

 __home_sal...9_code_sage10_spyx.c __home_sal...ode_sage10_spyx.html

time p = first_primes_v3(10000)

 CPU time: 0.24 s, Wall time: 0.25 s

We didn't screw up anything, this function actually does produce primes:
first_primes_v3(17)

 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59]

And it agrees with the Sage version of the function:
first_primes_v3(10000) == primes_first_n(10000)

 True

But the Sage version is much, much better:
time p = primes_first_n(10000)

 CPU time: 0.01 s, Wall time: 0.01 s

Sage Worksheet: 05 - Introduction to Cython http://localhost:8000/home/admin/19/print

3 of 3 27/11/08 09:22 PM

