Sage Worksheet: The Sage-Words Library http://localhost:8000/home/admin/27/print

The Sage-Words Library

Creating finite words

A word w is a sequence of elements from an alphabet A (a finite set).

Collection of all words over an alphabet.

To create the collection of all words over an alphabet, use the Words command.
Words([0,1,2])
Words over Ordered Alphabet [0, 1, 2]
A = Words("ab")
A
Words over Ordered Alphabet ['a', 'b']
To create a word in this set, pass data that describes the word.
A("abbabaab")
word: abbabaab
A(["a","b","b","a","b","a","a","b"])
word: abbabaab

W = Words([0,1,2], length=3)
W

Finite Words over Ordered Alphabet [0, 1, 2] of length 3
W.list()

1of11 24/11/08 11:30 PM

Sage Worksheet: The Sage-Words Library http://localhost:8000/home/admin/27/print

word: 000,
word: 001,
word: 002,
word: 010,
word: 011,
word: 012,
word: 020,
word: 021,
word: 022,
word: 100,
word: 101,
word: 102,
word: 110,
word: 111,
word: 112,
word: 120,
word: 121,
word: 122,
word: 200,
word: 201,
word: 202,
word: 210,
word: 211,
word: 212,
word: 220,
word: 221,
word: 222]

Finite words from strings and lists.

You can also use the Word command to construct words. This builds an alphabet
from the letters occurring in the word.
Word("abbabaab")
word: abbabaab
w = Word([0,1,1,0,1,0,0,1])
w
word: 01101001

w.alphabet ()
Ordered Alphabet [0, 1]

20f 11 24/11/08 11:30 PM

Sage Worksheet: The Sage-Words Library http://localhost:8000/home/admin/27/print

3of11

Finite words from words.

Words can be concatenated.

abc = Word("abc")
ba = Word("ba")

abc * ba
word: abcba

ba + abc

word: baabc
ba**3

word: bababa

Finite words from infinite words.

If you have an infinite word, then you can slice it to get a finite word.

u = ba**Infinity
u
Infinite word over ['a', 'b']

u[10:50]
word: ba

Constructing infinite words.

Infinite words from functions.

An infinite word can be described by a function f that takes values in the

alphabet: f(0)f(1)f(2)f(3)....
WordOptions(letter separator='")

Word(['f(O)"',"'f(1)","'f(2)",'f(3)","..."])
word: f(0)f(1)f(2)f(3)...
def f(n):

return n%3

map(f, range(40))
[0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0]

u = Word(f, alphabet=[0,1,2])
u

24/11/08 11:30 PM

Sage Worksheet: The Sage-Words Library

40f11

Infinite word over [0, 1, 2]
ul:13]
word: 0120120120120

def t(n):
return add(Integer(n).digits(base=2)) % 2

tm = Word(t, alphabet = [0, 1])
tm

Infinite word over [0, 1]
tm[:37]
word: 0110100110010110100101100110100110010

http://localhost:8000/home/admin/27/print

Word(lambda n : add(Integer(n).digits(base=2)) % 2, alphabet = [0, 1])

Infinite word over [0, 1]

Infinite words from iterators.

Infinite words can be constructed using an iterative process. Start with two words a

and ab.
W = Words("ab")

f0 = W("a")
fo
word: a
fl = W("ab")
fl
word: ab
Concatenate them:
2 = f1 * f0
f2
word: aba
Next concatenate the previous two words.
3 = f2 * fl
f3
word: abaab
Next concatenate the previous two words.
f4 = 3 * f2
4

24/11/08 11:30 PM

Sage Worksheet: The Sage-Words Library http://localhost:8000/home/admin/27/print

word: abaababa
Next concatenate the previous two words.

f5 = f4 * 3
f5
word: abaababaabaab
f6 = f5 * f4
f6

word: abaababaabaababaababa
And so on.... This is called the Fibonacci Word.

def fibword():
f@ = Ilall
fl = "ab"
yield W(f0)
while True:
yield W(f1)
fo, f1 = f1, f1+f0

f = fibword()
for i in range(7):
print f.next()
word: a
word: ab
word: aba
word: abaab
word: abaababa
word: abaababaabaab
word: abaababaabaababaababa

def fibword letter iterator():
r.II nn
Iterates through the letters of the Fibonacci word.

n=2=~0
for w in fibword():
for x in w[n:]:
n+=1
yield x

F = Word(fibword letter iterator(), alphabet="ab")
F
Infinite word over ['a’, 'b']
F[:37]
word: abaababaabaababaababaabaababaabaababa

Infinite words from morphisms.

50f11 24/11/08 11:30 PM

Sage Worksheet: The Sage-Words Library http://localhost:8000/home/admin/27/print

Let mu: A — Words(A)
mu = WordMorphism('a->ab,b->ba'); mu
WordMorphism: a->ab, b->ba
mu('a')
word: ab
mu()
word: abba
mu(_)
word: abbabaab
mu()
word: abbabaabbaababba
mu()
word: abbabaabbaababbabaababbaabbabaab
tm = mu('a',Infinity)
tm
Fixed point beginning with 'a' of the morphism WordMorphism: a->ab, b->ba
tm[:37]
word: abbabaabbaababbabaababbaabbabaabbaaba

Pre-defined words.

words.FibonacciWord()

Fibonacci word over [0, 1], defined recursively
words.FibonacciWord("ab")

Fibonacci word over ['a’, 'b'], defined recursively
words.ThueMorsewWord("ab")

Thue-Morse word on the alphabet ['a’, 'b']
words.FixedPointOfMorphism(mu, 'a')

Fixed point beginning with 'a' of the morphism WordMorphism: a->ab, b->ba
words.ChristoffelWord(7,3,"xy")

word: XyyXyyxXyyy
words.RandomWord(18,5)

word: 003133210413204143

Tribonacci = words.StandardEpisturmianWord(Word('abc'))
Tribonacci

Standard episturmian word over ['a’, 'b', 'c']
Tribonacci[:40]
word: abacabaabacababacabaabacabacabaabacababa

6 of 11 24/11/08 11:30 PM

Sage Worksheet: The Sage-Words Library http://localhost:8000/home/admin/27/print

Create your own word class.

Lyndon Words

A word w is a Lyndon word if it appears first in dictionary order among its cyclic
rearrangements. (The cyclic rearrangements of a word are called its conjugates.)
w = Word("abbaab")
w
word: abbaab
w.conjugates ()
set([word: aababb, word: baabab, word: babbaa, word: abbaab, word: bbaaba, word: abab]
min(w.conjugates())
word: aababb

class LyndonWord(sage.combinat.words.word.FiniteWord over OrderedAlphabet):
def init (self, lw, alphabet=(0,1)):
initialize
super(LyndonWord, self). init (Words(alphabet), lw)

type checking
if not self.is lyndon():
raise TypeError, "not a Lyndon word"

LyndonWord([0,0,1,0,1,1])
word: 001011
LyndonWord("abb", alphabet="ab")
word: abb

LyndonWord("abbaab", alphabet="ab")
Traceback (click to the left for traceback)

TypeError: not a Lyndon word

w = Word("abbaab")

w.is lyndon()
False
Word("abb").is lyndon()
True
Word("aab").is lyndon()
True
print w.lyndon factorization()

7 of 11 24/11/08 11:30 PM

Sage Worksheet: The Sage-Words Library

8 of 11

(abb.aab)

Interrogating words

w = words.ThueMorseWord("ab")[:8]
w
word: abbabaab

w.1is palindrome()
False

w.is lyndon()
False

print w.lyndon factorization()
(abb.ab.aab)

print w.crochemore factorization()
(a.b.b.ab.a.ab)

st = w.suffix_tree()
st

Implicit Suffix Tree of the word: abbabaab
st.show(word labels=True)

http://localhost:8000/home/admin/27/print

w.number of factors()
28
Word("abba") .factor set()

{word: ,word: b,word: bb,word: abb,word: ab,word: ba,word: bba,word: abba,word: a}

24/11/08 11:30 PM

Sage Worksheet: The Sage-Words Library

9o0f 11

Currently available commands

for s in dir(w):
if not s.startswith(" "):

print s
BWT
alphabet
apply morphism

apply permutation to letters
apply permutation to positions

border

category

charge

coerce

colored vector
commutes with
complete return_words
conjugate

conjugate position
conjugates

count

critical exponent
crochemore factorization
db

defect

deg inv lex less

deg lex less

deg rev lex less
degree

delta

delta derivate

delta derivate left
delta derivate right
delta inv

dump

dumps

evaluation
evaluation dict
evaluation partition
evaluation sparse
exponent

factor _iterator
factor_occurrences in
factor set
first pos in

freq

good suffix table
implicit suffix tree

http://localhost:8000/home/admin/27/print

24/11/08 11:30 PM

Sage Worksheet: The Sage-Words Library

10 0f 11

inv_lex less
inversions

is balanced

is cadence

is _conjugate with
is cube

is cube free
is_empty

is factor of

is full

is_lyndon

is overlap

is palindrome

is prefix of

is primitive

is proper prefix of
is proper suffix of
is quasiperiodic
is smooth prefix
is square

is square_free

is subword of

is suffix of

is symmetric

iterated palindromic closure

lacunas

last position table
length border

lengths 1ps

lengths unioccurrent 1ps
lex greater

lex less

longest common prefix
longest common suffix
lps

lyndon_ factorization
minimal period

nb factor occurrences in
nb_subword occurrences in
number of factors

order

overlap partition
palindromes
palindromic_closure
palindromic lacunas_ study
parent

parikh vector

phi

phi inv

prefix function table
primitive

primitive length

http://localhost:8000/home/admin/27/print

24/11/08 11:30 PM

Sage Worksheet: The Sage-Words Library http://localhost:8000/home/admin/27/print

quasiperiods

rename

reset name

return _words
return words derivate
rev_lex less

reversal

save

shifted shuffle
shuffle

standard factorization
standard factorization of lyndon factorization
standard permutation
string rep

suffix _tree
suffix_trie

swap

swap_decrease
swap_increase

version

11 0of 11 24/11/08 11:30 PM

