A Very Very Special Class of Algebras

(On a subalgebra of the group algebra of a finite Coxeter group)

Franco V Saliola
saliola@gmail.com

Université du Québec à Montréal
25 May 2007

Quivers from Hyperplane Arrangements

Quivers from Hyperplane Arrangements

$$
\mathbb{R}^{3}
$$

Start in a finite dimensional real vector space \mathbb{R}^{n},

Quivers from Hyperplane Arrangements

Start in a finite dimensional real vector space \mathbb{R}^{n}, together with a finite set of hyperplanes containing $\overrightarrow{0}$.

Quivers from Hyperplane Arrangements

Start in a finite dimensional real vector space \mathbb{R}^{n}, together with a finite set of hyperplanes containing $\overrightarrow{0}$. Consider all possible intersections of the hyperplanes.

Quivers from Hyperplane Arrangements

Start in a finite dimensional real vector space \mathbb{R}^{n}, together with a finite set of hyperplanes containing $\overrightarrow{0}$. Consider all possible intersections of the hyperplanes.

Quivers from Hyperplane Arrangements

Start in a finite dimensional real vector space \mathbb{R}^{n}, together with a finite set of hyperplanes containing $\overrightarrow{0}$. Consider all possible intersections of the hyperplanes.

Quivers from Hyperplane Arrangements

Start in a finite dimensional real vector space \mathbb{R}^{n}, together with a finite set of hyperplanes containing $\overrightarrow{0}$. Consider all possible intersections of the hyperplanes.

Quivers from Hyperplane Arrangements

Start in a finite dimensional real vector space \mathbb{R}^{n}, together with a finite set of hyperplanes containing $\overrightarrow{0}$. Consider all possible intersections of the hyperplanes.

A second example

The braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$ for $1 \leq i<j \leq n$.

The braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$ for $1 \leq i<j \leq n$.
- Intersections of $H_{i j}$ correspond to set partitions of $\{1, \ldots, n\}$:

$$
H_{1,4} \cap H_{2,3} \cap H_{1,5}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{1}=x_{4}=x_{5} \text { and } x_{2}=x_{3}\right\}
$$

The braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$ for $1 \leq i<j \leq n$.
- Intersections of $H_{i j}$ correspond to set partitions of $\{1, \ldots, n\}$:

$$
\begin{aligned}
H_{1,4} \cap H_{2,3} \cap H_{1,5}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{1}\right. & \left.=x_{4}=x_{5} \text { and } x_{2}=x_{3}\right\} \\
\leftrightarrow & \leftrightarrow 145 \mid 23\} .
\end{aligned}
$$

The braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$ for $1 \leq i<j \leq n$.
- Intersections of $H_{i j}$ correspond to set partitions of $\{1, \ldots, n\}$:

$$
\begin{aligned}
H_{1,4} \cap H_{2,3} \cap H_{1,5}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{1}\right. & \left.=x_{4}=x_{5} \text { and } x_{2}=x_{3}\right\} \\
\leftrightarrow & \{145 \mid 23\} .
\end{aligned}
$$

- For $n=3$:

Partition lattice for $n=4$.

Recall: $\{13 \mid 24\}=\left\{\vec{x} \in \mathbb{R}^{4}: x_{1}=x_{3}, x_{2}=x_{4}\right\}$.

Relations for \mathcal{Q}

Every interval of length two gives one relation: the sum of the paths of length two in the interval.

Ten reasons these algebras are interesting.

Ten reasons these algebras are interesting.

- Reason 1: They appear in nature.

Faces of a Hyperplane Arrangement

A hyperplane arrangement partitions \mathbb{R}^{n} into subsets called faces.

Faces of a Hyperplane Arrangement

A hyperplane arrangement partitions \mathbb{R}^{n} into subsets called faces.

The origin.

Faces of a Hyperplane Arrangement

A hyperplane arrangement partitions \mathbb{R}^{n} into subsets called faces.

Rays emanating from the origin.

Faces of a Hyperplane Arrangement

A hyperplane arrangement partitions \mathbb{R}^{n} into subsets called faces.

Rays emanating from the origin.

Faces of a Hyperplane Arrangement

A hyperplane arrangement partitions \mathbb{R}^{n} into subsets called faces.

Rays emanating from the origin.

Faces of a Hyperplane Arrangement

A hyperplane arrangement partitions \mathbb{R}^{n} into subsets called faces.

Rays emanating from the origin.

Faces of a Hyperplane Arrangement

A hyperplane arrangement partitions \mathbb{R}^{n} into subsets called faces.

Rays emanating from the origin.

Faces of a Hyperplane Arrangement

A hyperplane arrangement partitions \mathbb{R}^{n} into subsets called faces.

Rays emanating from the origin.

Faces of a Hyperplane Arrangement

A hyperplane arrangement partitions \mathbb{R}^{n} into subsets called faces.

The regions cut out by the hyperplanes.

Faces of a Hyperplane Arrangement

A hyperplane arrangement partitions \mathbb{R}^{n} into subsets called faces.

The regions cut out by the hyperplanes.

Faces of a Hyperplane Arrangement

A hyperplane arrangement partitions \mathbb{R}^{n} into subsets called faces.

The regions cut out by the hyperplanes.

Faces of a Hyperplane Arrangement

A hyperplane arrangement partitions \mathbb{R}^{n} into subsets called faces.

The regions cut out by the hyperplanes.

Faces of a Hyperplane Arrangement

A hyperplane arrangement partitions \mathbb{R}^{n} into subsets called faces.

The regions cut out by the hyperplanes.

Faces of a Hyperplane Arrangement

A hyperplane arrangement partitions \mathbb{R}^{n} into subsets called faces.

The regions cut out by the hyperplanes.

Product of Faces

Product of Faces

$x y:=\begin{aligned} & \text { face entered by moving a small distance } \\ & \text { along a straight line from } x \text { towards } y .\end{aligned}$

Product of Faces

$x y:=\begin{aligned} & \text { face entered by moving a small distance } \\ & \text { along a straight line from } x \text { towards } y .\end{aligned}$

Product of Faces

$x y:=\begin{aligned} & \text { face entered by moving a small distance } \\ & \text { along a straight line from } x \text { towards } y .\end{aligned}$

Product of Faces

$x y:=\begin{aligned} & \text { face entered by moving a small distance } \\ & \text { along a straight line from } x \text { towards } y .\end{aligned}$

Product of Faces

$x y:=\begin{aligned} & \text { face entered by moving a small distance } \\ & \text { along a straight line from } x \text { towards } y .\end{aligned}$

Product of Faces

$$
x y:=\begin{aligned}
& \text { face entered by moving a small distance } \\
& \text { along a straight line from } x \text { towards } y .
\end{aligned}
$$

Left Regular Band: an associative semigroup satisfying

$$
x^{2}=x \text { and } x y x=x y .
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34,256,17)(257,134,6)=
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34,256,17)(257,134,6)=(
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34) 256,17)(257,134,6)=(34 \cap 257
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34) 256,17)(257,134,6)=(\emptyset
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34,256,17)(257,134,6)=(
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34 .) 256,17)(257 \bigcirc 134,6)=(34 \cap 134
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34 .) 256,17)(257(134) 6)=(34
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34 .) 256,17)(257,134 \odot 6)=(34,34 \cap 6
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34,256,17)(257,134 \times 6)=(34, \emptyset
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
\text { (34.) } 256,17)(257,134.6)=(34,
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34256,17)(257,134,6)=(34,256 \cap 257
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34 \bigcirc 17)(257,134,6)=(34,25,
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(3 4 \longdiv { 2 5 6 }) 17)(257(134,6)=(34,25,256 \cap 134
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34 \bigcirc 1256)(257,134,6)=(34,25, \emptyset
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34 \bigcirc 1256)(257,134,6)=(34,25
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(3 4 \longdiv { 2 5 6 }) 17)(257,134 \times 6)=(34,25,256 \cap 6
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34 \overparen{256} 17)(257,1346)=(34,25,6
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34,256 \bigcirc 17)(257,134,6)=(34,25,6,17 \cap 257
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34,256 \bigcirc 17)(257,134,6)=(34,25,6,7
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34,256 \overparen{17})(257 \bigcirc 134,6)=(34,25,6,7,17 \cap 134
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34,256 \overparen{17})(257 \overparen{134}) 6)=(34,25,6,7,1
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34,2 5 6 \longdiv { 1 7 })(257,134.6)=(34,25,6,7,1,17 \cap 6
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34,2 5 6 \longdiv { 1 7 })(257,134 \overparen{6})=(34,25,6,7,1, \emptyset
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34,256,17)(257,134,6)=(34,25,6,7,1)
$$

Faces of the braid arrangement

- Hyperplanes: $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\}$.
- Faces correspond to ordered set partitions of $\{1,2, \ldots, n\}$.

$$
(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow(257,13,4689)
$$

- Product: intersect blocks in the partitions:

$$
(34,256,17)(257,134,6)=(34,25,6,7,1)
$$

- Interest: product encodes random walks on the regions. Probability \rightsquigarrow algebra!

Connection between \mathcal{F} and \mathcal{Q}

Theorem
Let k denote some field and let \mathcal{F} denote the semigroup of faces of a hyperplane arrangement. Then as k-algebras,

$$
k \mathcal{F} \cong k \mathcal{Q} / I
$$

Ten reasons these algebras are interesting.

Ten reasons these algebras are interesting.

- Reason 1: Appear in nature; applications to random walks.
- Theorem. $k \mathcal{F} \cong k \mathcal{Q} / I$.

Ten reasons these algebras are interesting.

- Reason 1: Appear in nature; applications to random walks.
- Theorem. $k \mathcal{F} \cong k \mathcal{Q} / I$.
- Reason 2: Every interval gives a quiver in this class.

Ten reasons these algebras are interesting.

- Reason 1: Appear in nature; applications to random walks.
- Theorem. $k \mathcal{F} \cong k \mathcal{Q} / I$.
- Reason 2: Every interval gives a quiver in this class.
- Reason 3: $k \mathcal{F}$ is tangible.
- Simple construction of primitive orthogonal idempotents in $k \mathcal{F}$.
- Geometry and topology of the arrangement gives minimal projective resolution of simple modules.
- The Ext spaces of the simple modules can be easily computed.

Ten reasons these algebras are interesting.

- Reason 4: They are Koszul algberas.
- Theorem. $k \mathcal{F} \cong k \mathcal{Q} / I$ is a Koszul algebra. Its Koszul dual is the incidence algebra of $\mathcal{Q}^{o p}$.

Ten reasons these algebras are interesting.

- Reason 4: They are Koszul algberas.
- Theorem. $k \mathcal{F} \cong k \mathcal{Q} / I$ is a Koszul algebra. Its Koszul dual is the incidence algebra of $\mathcal{Q}^{o p}$.
- Reason 5: Explicit descriptions of the Tits and Euler forms.
- $q(z)=\sum_{X} z_{X}^{2}-\sum_{Y \lessdot X} z_{X} z_{Y}+\sum_{l(Y, X)=2} z_{X} z_{Y}$.
- $\chi(z)=\sum_{Y \leq X}(-1)^{l(Y, X)} z_{X} z_{Y}$.

Ten reasons these algebras are interesting.

- Reason 4: They are Koszul algberas.
- Theorem. $k \mathcal{F} \cong k \mathcal{Q} / I$ is a Koszul algebra. Its Koszul dual is the incidence algebra of $\mathcal{Q}^{o p}$.
- Reason 5: Explicit descriptions of the Tits and Euler forms.
- $q(z)=\sum_{X} z_{X}^{2}-\sum_{Y \lessdot X} z_{X} z_{Y}+\sum_{l(Y, X)=2} z_{X} z_{Y}$.
- $\chi(z)=\sum_{Y \leq X}(-1)^{l(Y, X)} z_{X} z_{Y}$.
* Reason 6: Hochschild cohomology is $\mathrm{HH}^{i}(k \mathcal{F})=0$ for $i>0$.

Ten reasons these algebras are interesting.

- Reason 7: $k \mathcal{F}$ is \mathbb{Z}-graded and graded by a lattice.

Ten reasons these algebras are interesting.

- Reason 7: $k \mathcal{F}$ is \mathbb{Z}-graded and graded by a lattice.
- Reason 8: There are interesting subclasses.
- Coordinate hyperplane arrangements.
- "Generic" hyperplane arrangements.
- Reflection arrangements.

Ten reasons these algebras are interesting.

- Reason 7: $k \mathcal{F}$ is \mathbb{Z}-graded and graded by a lattice.
- Reason 8: There are interesting subclasses.
- Coordinate hyperplane arrangements.
- "Generic" hyperplane arrangements.
- Reflection arrangements.
- Reason 9: Reflection arrangements \rightsquigarrow group actions!

Reflection Arrangements

Reflection Arrangements

- Reflection group W : a group generated by reflections of \mathbb{R}^{n}.

Example: $W=S_{n}$ acting on \mathbb{R}^{n} by permuting coordinates.

$$
\omega\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{\omega(1)}, x_{\omega(2)}, \ldots, x_{\omega(n)}\right)
$$

Reflection Arrangements

- Reflection group W : a group generated by reflections of \mathbb{R}^{n}.

Example: $W=S_{n}$ acting on \mathbb{R}^{n} by permuting coordinates.

$$
\omega\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{\omega(1)}, x_{\omega(2)}, \ldots, x_{\omega(n)}\right)
$$

- Reflection arrangement: hyperplanes fixed by reflections in W.

Example: $W=S_{n}$; for each $1 \leq i<j \leq n$,

$$
H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n}: x_{i}=x_{j}\right\} .
$$

Group actions

Group actions

The W action on \mathbb{R}^{n} induces two actions of W on $k \mathcal{Q}$.

Group actions

The W action on \mathbb{R}^{n} induces two actions of W on $k \mathcal{Q}$.
Action 1: Since vertices of \mathcal{Q} correspond to intersections of the hyperplanes, W permutes the vertices of \mathcal{Q}. This induces an action of W on \mathcal{Q}.

Example: For $W=S_{n}$, the vertices of \mathcal{Q} are set partitions. S_{n} acts on set partitions element-wise.

$$
\tau_{1,3} \cdot(\{146,5,23\} \rightarrow\{146,235\})=\{346,5,21\} \rightarrow\{346,215\}
$$

Group actions

Action 2: W permutes the hyperplanes in the reflection arrangement; so, W acts on the faces \mathcal{F}. This extends to an action of W on $k \mathcal{F} \cong k \mathcal{Q} / I$, which lifts to an action of W on $k \mathcal{Q}$.

Example: S_{n} action on faces (ordered set partitions):

$$
\tau_{1,3} \cdot(7,23,56,14)=(7,21,56,34) .
$$

On $k \mathcal{Q}$, combine Action 1 with a sign:

$$
\begin{aligned}
& \omega\left(X_{1} \rightarrow \cdots \rightarrow X_{p}\right)= \\
& \quad \operatorname{sign}\left(\omega, X_{1}\right) \operatorname{sign}\left(\omega, X_{p}\right)\left(\omega\left(X_{1}\right) \rightarrow \cdots \rightarrow \omega\left(X_{p}\right)\right) .
\end{aligned}
$$

The S_{n}-invariant subalgebra $(k \mathcal{F})^{S_{n}}$

The S_{n}-invariant subalgebra $(k \mathcal{F})^{S_{n}}$

- $(k \mathcal{F})^{S_{n}}$ is the set of elements fixed under the action of S_{n}.

$$
(12,3)+(13,2)+(23,1) \in(k \mathcal{F})^{S_{n}} .
$$

The S_{n}-invariant subalgebra $(k \mathcal{F})^{S_{n}}$

- $(k \mathcal{F})^{S_{n}}$ is the set of elements fixed under the action of S_{n}.

$$
(12,3)+(13,2)+(23,1) \in(k \mathcal{F})^{S_{n}} .
$$

- "Insert commas" morphism: order elements in each block.

$$
(12,3)+(13,2)+(23,1) \mapsto(1,2,3)+(1,3,2)+(2,3,1) .
$$

This gives an injective algebra morphism $(k \mathcal{F})^{S_{n}} \rightarrow\left(k S_{n}\right)^{o p}$, viewing each summand as a permutation of $\{1, \ldots, n\}$.

The S_{n}-invariant subalgebra $(k \mathcal{F})^{S_{n}}$

- $(k \mathcal{F})^{S_{n}}$ is the set of elements fixed under the action of S_{n}.

$$
(12,3)+(13,2)+(23,1) \in(k \mathcal{F})^{S_{n}} .
$$

- "Insert commas" morphism: order elements in each block.

$$
(12,3)+(13,2)+(23,1) \mapsto(1,2,3)+(1,3,2)+(2,3,1) .
$$

This gives an injective algebra morphism $(k \mathcal{F})^{S_{n}} \rightarrow\left(k S_{n}\right)^{o p}$, viewing each summand as a permutation of $\{1, \ldots, n\}$.

- Reason 10: $(k \mathcal{F})^{S_{n}}$ is the descent algebra of S_{n}.

The descent algebra of S_{n}

- Defined by L. Solomon in 1976 for any finite Coxeter group.
- It enjoys connections with:
- the representation theory of the symmetric group;
- the free Lie algebra;
- probability theory;
- Hochschild homology of algebras;
- combinatorics;
- hyperplane arrangements.

The quiver of $(k \mathcal{F})^{S_{n}}$

- Determined from the signed action of S_{n} on $k \mathcal{Q}$.
- Lift action of S_{n} from $k \mathcal{F}$ to $k \mathcal{Q}$ via $k \mathcal{Q} \rightarrow k \mathcal{F}$, and consider $(k \mathcal{Q})^{S_{n}} \rightarrow(k \mathcal{Q} / I)^{S_{n}} \cong(k \mathcal{F})^{S_{n}}$.
- The vertices are the S_{n}-orbits of the vertices of \mathcal{Q}.
- $[X] \rightarrow[Y]$ iff $\nexists \omega \in S_{n}: \omega(X \rightarrow Y)=-(X \rightarrow Y)$.

Partition lattice for $n=4$.

Quiver of $(k \mathcal{F})^{S_{n}}$

- Vertices are integer partitions of n :

$$
p_{1} \geq p_{2} \geq \cdots \geq p_{i}>0 \text { with } \sum p_{i}=n
$$

- $p \rightarrow q$ iff q is obtained from p by merging two distinct parts of p.
- For $n=4$: 1111

Ten reasons these algebras are interesting.

1. Appear in nature; applications to random walks.
2. Every interval gives a quiver in this class.
3. $k \mathcal{F}$ is tangible.
4. They are Koszul algberas.
5. Explicit descriptions of the Tits and Euler forms.
6. Hochschild cohomology is $\mathrm{HH}^{i}(k \mathcal{F})=0$ for $i>0$.
7. $k \mathcal{F}$ is \mathbb{Z}-graded and graded by a lattice.
8. There are interesting subclasses.
9. Reflection arrangements \rightsquigarrow group actions!
10. $(k \mathcal{F})^{W}$ is the descent algebra of W.

Some questions

Suppose G is a group acting on an algebra A.

- What can be said about A^{G} ?
- For $G=S_{n}$ and $A=k \mathcal{F}$ we have, for all $p \geq 0$,

$$
\operatorname{rad}^{p}\left(A^{G}\right)=\operatorname{rad}^{p}(A) \cap A^{G}
$$

How often does this hold? Other reflection groups?

- How do you find the quiver of A^{G} knowing the quiver of A ?
- Given the quiver, when can one find relations for A^{G} ?
- What about $A * G$?
- Gröbner bases?
- What does Koszul give you? The Koszul dual is very nice!
- Left regular bands: which give Koszul algebras?

One last thing. . .

I will be looking for a job in the Fall.

