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Start in a finite dimensional real vector space R",
together with a finite set of hyperplanes containing 0.
Consider all possible intersections of the hyperplanes.
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The braid arrangement

e Hyperplanes: H;j; = {7 € R" : z; = z;} for 1 <i < j <n.
e Intersections of H;; correspond to set partitions of {1,...,n}:

H1,4 N H2’3 N H1,5 = {ZE ER": 21 =24 =25 and z9 = .1‘3}
— {145|23}.
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e Forn=3:



Partition lattice for n = 4.

1]2|3]4

A

12|34 13|24 14]2(3 1|23|4 1)24|3 1|2]34

AV

12(34 123]4 124]3 13]24 1342 14]23 1[234

\\//

1234

Recall: {13|24} = {Z € R* : 21 = w3, 29 = 24}.
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Every interval of length two gives one relation:
the sum of the paths of length two in the interval.
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Ten reasons these algebras are interesting.

e Reason 1: They appear in nature.
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Product of Faces

_ face entered by moving a small distance
along a straight line from x towards y.

/

X

Y

N

Left Regular Band: an associative semigroup satisfying

2?2 =z and zyx = xy.



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

(34,256,17)(257,134, 6) =



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

256, 17)134, 6) = (



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

256, 17)134, 6) = (34 N 257



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

256, 17)134, 6) = (@



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

256, 17)134, 6) = (



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

256, 17)(2576) - (34 N 134



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

256, 17)(2576) - (34,



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

256, 17)(257, 134(6) = (34, 34N6



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

256, 17)(257, 134(6) = (34, 0



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

256, 17)(257, 134(6) = (34,



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

(3417)134, 6) = (34, 256 N 257



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

(3417)134, 6) = (34, 25,



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

34‘17 257‘ 34 25, 256 N 134



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

34‘17 257‘ 34 25, 0



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

34‘17 257‘ 34 25,



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

(3417)(257, 134(6) = (34, 25, 256 N 6



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

(3417)(257, 134(6) = (34, 95, 6,



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

(34, 256134, 6) = (34, 25, 6, 17N 257



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

(34, 256134, 6) = (34, 25, 6, 7,



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
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Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

(34, 256@(257, 134(6) = (34, 25,6,7,1,17N6



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

(34, 256@(257, 134(6) = (34, 25, 6,7, 1,0



Faces of the braid arrangement

e Hyperplanes: Hij = {Z € R" : z; = x;}.
e Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

e Product: intersect blocks in the partitions:

(34,256, 17)(257, 134, 6) = (34, 25, 6, 7, 1).



Faces of the braid arrangement

Hyperplanes: H;j = {Z € R" : x; = z;}.
Faces correspond to ordered set partitions of {1,2,...,n}.

({2,5,7},{1,3},{4,6,8,9}) « (257,13, 4689)

Product: intersect blocks in the partitions:

(34,256, 17)(257, 134, 6) = (34, 25, 6, 7, 1).

Interest: product encodes random walks on the regions.
Probability ~ algebral



Connection between F and O

Theorem
Let k denote some field and let F denote the semigroup of faces of
a hyperplane arrangement. Then as k-algebras,

kF 2 kQ/I.
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Ten reasons these algebras are interesting.

e Reason 1: Appear in nature; applications to random walks.
e Theorem. kF = kQ/I.

e Reason 2: Every interval gives a quiver in this class.

e Reason 3: kF is tangible.

e Simple construction of primitive orthogonal idempotents in kF.

e Geometry and topology of the arrangement gives minimal
projective resolution of simple modules.

e The Ext spaces of the simple modules can be easily computed.
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Ten reasons these algebras are interesting.

e Reason 4: They are Koszul algberas.

e Theorem. kF =2 kQ/I is a Koszul algebra.
Its Koszul dual is the incidence algebra of Q°P.

e Reason 5: Explicit descriptions of the Tits and Euler forms.

2
:E Zx — E ZX2y + E ZX2Y -
X

Y <X 1Y, X)=2

° X(Z) = Z (—l)l(Y’X)ZXzy.

Y<X

* Reason 6: Hochschild cohomology is HH!(kF) = 0 for i > 0.
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Ten reasons these algebras are interesting.

e Reason 7: kF is Z-graded and graded by a lattice.

e Reason 8: There are interesting subclasses.

o Coordinate hyperplane arrangements.
e “Generic’ hyperplane arrangements.
e Reflection arrangements.

e Reason 9: Reflection arrangements ~» group actions!
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Reflection Arrangements

e Reflection group W: a group generated by reflections of R".

Example: W = S, acting on R"™ by permuting coordinates.
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Reflection Arrangements

e Reflection group W: a group generated by reflections of R".

Example: W = S, acting on R"™ by permuting coordinates.
W1, @2, Tn) = (Tw) Zw@)s - Tum)) -
e Reflection arrangement: hyperplanes fixed by reflections in W.
Example: W = S,,; foreach 1 <i < j <mn,

Hij = {fERnICL'i :xj}.
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Group actions

The W action on R™ induces two actions of W on kQ.



Group actions

The W action on R™ induces two actions of W on kQ.

Action 1: Since vertices of Q correspond to intersections of the
hyperplanes, W permutes the vertices of Q. This induces an
action of W on Q.

Example: For W = S,,, the vertices of Q are set partitions.
S, acts on set partitions element-wise.

T ({146,5,23} - {146,235}) = {346,5,21} — {346,215} .



Group actions

Action 2: T permutes the hyperplanes in the reflection arrangement; so,
W acts on the faces F. This extends to an action of W on
kF =2 kQ/I, which lifts to an action of W on kQ.

Example: S,, action on faces (ordered set partitions):
- (7,23,56,14) = (7,21,56,34) .
On kQ, combine Action 1 with a sign:
WXy = X)) =
sign(w, X1)sign(w, X,,) (w(Xl) SN w(x,,)).



The S,,-invariant subalgebra (kF)*r
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The S,-invariant subalgebra (kF)%"

o (kF)% is the set of elements fixed under the action of S,,.
(12,3) + (13,2) + (23,1) € (kF)5".
e “Insert commas” morphism: order elements in each block.

(12,3) + (13,2) + (23,1) — (1,2,3) + (1, 3,2) + (2,3, 1).

This gives an injective algebra morphism (kF)% — (kS,,)°P,
viewing each summand as a permutation of {1,...,n}.

e Reason 10: (kF)5 is the descent algebra of S,,.



The descent algebra of .S,

e Defined by L. Solomon in 1976 for any finite Coxeter group.

e |t enjoys connections with:

the representation theory of the symmetric group;
the free Lie algebra;

probability theory;

Hochschild homology of algebras;

combinatorics;

hyperplane arrangements.



The quiver of (kF)%

Determined from the signed action of S,, on kQ.

Lift action of S,, from kF to kQ via kQ — kF,
and consider (kQ)*» — (kQ/I)%" = (kF)5n.

The vertices are the S,-orbits of the vertices of Q.

[X] = [V] iff Zw € Sp:w(X —Y) =—(X = Y).



Partition lattice for n = 4.

1/2/3]4

7\

12|3]4 13|2]4 14|2]3 1|23]4 1|24[3 1/2|34

AV =SSN
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Quiver of (kF)%r

e Vertices are integer partitions of n :
p1 = p2 >+ > pi >0 with Zpizn-

e p — ¢ iff ¢ is obtained from p by merging two distinct parts of
p.

e Forn =4: 1111
211
31 22

4
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Ten reasons these algebras are interesting.

Appear in nature; applications to random walks.
Every interval gives a quiver in this class.

kF is tangible.

They are Koszul algberas.

Explicit descriptions of the Tits and Euler forms.
Hochschild cohomology is HH!(kF) = 0 for i > 0.
kF is Z-graded and graded by a lattice.

There are interesting subclasses.

Reflection arrangements ~-» group actions!
(kF)W is the descent algebra of V.



Some questions

Suppose G is a group acting on an algebra A.
o What can be said about A¢?
e For G =5, and A = kJF we have, for all p > 0,

rad?(AY) = rad?(A) N A°.

How often does this hold? Other reflection groups?

How do you find the quiver of A® knowing the quiver of A?
Given the quiver, when can one find relations for AG?
What about A * G?

Grobner bases?

What does Koszul give you? The Koszul dual is very nice!

Left regular bands: which give Koszul algebras?



One last thing. ..

| will be looking for a job in the Fall.



