A *Very* Very Special Class of Algebras (On a subalgebra of the group algebra of a finite Coxeter group)

Franco V Saliola saliola@gmail.com

Université du Québec à Montréal

25 May 2007

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

 \mathbb{R}^3

Start in a finite dimensional real vector space \mathbb{R}^n ,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Start in a finite dimensional real vector space \mathbb{R}^n , together with a finite set of hyperplanes containing $\vec{0}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

• Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}$ for $1 \le i < j \le n$.

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}$ for $1 \le i < j \le n$.
- Intersections of H_{ij} correspond to set partitions of $\{1, \ldots, n\}$:

 $H_{1,4} \cap H_{2,3} \cap H_{1,5} = \{ \vec{x} \in \mathbb{R}^n : x_1 = x_4 = x_5 \text{ and } x_2 = x_3 \}$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}$ for $1 \le i < j \le n$.
- Intersections of H_{ij} correspond to set partitions of $\{1, \ldots, n\}$:

$$H_{1,4} \cap H_{2,3} \cap H_{1,5} = \{ \vec{x} \in \mathbb{R}^n : x_1 = x_4 = x_5 \text{ and } x_2 = x_3 \} \\ \leftrightarrow \{ 145 | 23 \} .$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}$ for $1 \le i < j \le n$.
- Intersections of H_{ij} correspond to set partitions of $\{1, \ldots, n\}$:

$$\begin{aligned} H_{1,4} \cap H_{2,3} \cap H_{1,5} &= \{ \vec{x} \in \mathbb{R}^n : x_1 = x_4 = x_5 \text{ and } x_2 = x_3 \} \\ & \leftrightarrow \{ 145 | 23 \} \,. \end{aligned}$$

Partition lattice for n = 4.

Recall: $\{13|24\} = \{\vec{x} \in \mathbb{R}^4 : x_1 = x_3, x_2 = x_4\}.$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Relations for ${\mathcal Q}$

Every interval of length two gives one relation: the sum of the paths of length two in the interval.

(日)、(四)、(日)、(日)

Ten reasons these algebras are interesting.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Ten reasons these algebras are interesting.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• Reason 1: They appear in *nature*.

A hyperplane arrangement partitions \mathbb{R}^n into subsets called *faces*.

<ロ> (四) (四) (三) (三) (三)

A hyperplane arrangement partitions \mathbb{R}^n into subsets called *faces*.

The origin.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

A hyperplane arrangement partitions \mathbb{R}^n into subsets called *faces*.

Rays emanating from the origin.

A hyperplane arrangement partitions \mathbb{R}^n into subsets called *faces*.

Rays emanating from the origin.

A hyperplane arrangement partitions \mathbb{R}^n into subsets called *faces*.

Rays emanating from the origin.

A hyperplane arrangement partitions \mathbb{R}^n into subsets called *faces*.

Rays emanating from the origin.

A hyperplane arrangement partitions \mathbb{R}^n into subsets called *faces*.

Rays emanating from the origin.

A hyperplane arrangement partitions \mathbb{R}^n into subsets called *faces*.

Rays emanating from the origin.

A hyperplane arrangement partitions \mathbb{R}^n into subsets called *faces*.

The regions cut out by the hyperplanes.

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

A hyperplane arrangement partitions \mathbb{R}^n into subsets called *faces*.

The regions cut out by the hyperplanes.

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

A hyperplane arrangement partitions \mathbb{R}^n into subsets called *faces*.

The regions cut out by the hyperplanes.

・ロト ・ 理 ト ・ ヨ ト ・ 日 ト ・ 日

A hyperplane arrangement partitions \mathbb{R}^n into subsets called *faces*.

The regions cut out by the hyperplanes.

A hyperplane arrangement partitions \mathbb{R}^n into subsets called *faces*.

The regions cut out by the hyperplanes.

A hyperplane arrangement partitions \mathbb{R}^n into subsets called *faces*.

The regions cut out by the hyperplanes.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

 $xy := \begin{cases} \text{face entered by moving a small distance} \\ \text{along a straight line from } x \text{ towards } y. \end{cases}$

 $xy := \begin{cases} \text{face entered by moving a small distance} \\ \text{along a straight line from } x \text{ towards } y. \end{cases}$

 $xy := \begin{cases} \text{face entered by moving a small distance} \\ \text{along a straight line from } x \text{ towards } y. \end{cases}$

 $xy := \begin{cases} \text{face entered by moving a small distance} \\ \text{along a straight line from } x \text{ towards } y. \end{cases}$

 $xy := \begin{cases} \text{face entered by moving a small distance} \\ \text{along a straight line from } x \text{ towards } y. \end{cases}$

 $xy := \begin{cases} \text{face entered by moving a small distance} \\ \text{along a straight line from } x \text{ towards } y. \end{cases}$

Left Regular Band: an associative semigroup satisfying $x^2 = x$ and xyx = xy.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

• *Product:* intersect blocks in the partitions:

(34, 256, 17)(257, 134, 6) =

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

$$(34,256,17)(257,134,6) = ($$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

ション ふゆ メ リン オ リン しょうく しょう

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

$$(34,256,17)(257,134,6) = (\emptyset$$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

$$(34,256,17)(257,134,6) = ($$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

$$(34,256,17)(257(134,6)) = (34 \cap 134)$$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

$$(34, 256, 17)(257(134, 6) = (34, 6)$$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

$$(34,256,17)(257,134,6) = (34, 34 \cap 6)$$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

$$(34,256,17)(257,134,6) = (34,\emptyset)$$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

$$(34, 256, 17)(257, 134, 6) = (34, 6)$$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

ション ふゆ メ キャ キャ マ ちょうく

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

ション ふゆ メ キャ キャ マ ちょうく

$$(34(256),17)(257),134,6) = (34, 25),$$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

• *Product:* intersect blocks in the partitions:

$$(34(256),17)(257(134),6) = (34, 25, 256 \cap 134)$$

ション ふゆ メ キャ キャ マ ちょうく

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

ション ふゆ メ リン オ リン しょうく しょう

$$(34(256,17)(257(134,6) = (34, 25, \emptyset))$$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

ション ふゆ メ リン オ リン しょうく しょう

$$(34(256),17)(257(134),6) = (34, 25, 25)$$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

$$(34 (256, 17)(257, 134, 6)) = (34, 25, 256 \cap 6)$$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

$$(34(256),17)(257,134,6) = (34, 25, 6,$$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

• *Product:* intersect blocks in the partitions:

$$(34, 256, 17)(257, 134, 6) = (34, 25, 6, 17 \cap 257)$$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

ション ふゆ メ キャ キャ マ ちょうく

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

• *Product:* intersect blocks in the partitions:

 $(34, 256 17)(257 134, 6) = (34, 25, 6, 7, 17 \cap 134)$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

$$(34, 256 17)(257 134, 6) = (34, 25, 6, 7, 1, 6)$$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

• *Product:* intersect blocks in the partitions:

$$(34, 256 17)(257, 134 6) = (34, 25, 6, 7, 1, 17 \cap 6)$$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- *Faces* correspond to *ordered* set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

ション ふゆ メ キャ キャ マ ちょうく

$$(34, 256 17)(257, 134 6) = (34, 25, 6, 7, 1, \emptyset)$$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

$$(34, 256, 17)(257, 134, 6) = (34, 25, 6, 7, 1).$$

- Hyperplanes: $H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$
- Faces correspond to ordered set partitions of $\{1, 2, \ldots, n\}$.

 $(\{2,5,7\},\{1,3\},\{4,6,8,9\}) \leftrightarrow (257,13,4689)$

• *Product:* intersect blocks in the partitions:

$$(34, 256, 17)(257, 134, 6) = (34, 25, 6, 7, 1).$$

 Interest: product encodes random walks on the regions. Probability → algebra!

Connection between ${\mathcal F}$ and ${\mathcal Q}$

Theorem

Let k denote some field and let \mathcal{F} denote the semigroup of faces of a hyperplane arrangement. Then as k-algebras,

 $k\mathcal{F} \cong k\mathcal{Q}/I.$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

• Reason 1: Appear in nature; applications to random walks.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• Theorem. $k\mathcal{F} \cong k\mathcal{Q}/I$.

• Reason 1: Appear in nature; applications to random walks.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Theorem. $k\mathcal{F} \cong k\mathcal{Q}/I$.
- Reason 2: Every interval gives a quiver in this class.

- Reason 1: Appear in nature; applications to random walks.
 - Theorem. $k\mathcal{F} \cong k\mathcal{Q}/I$.
- Reason 2: Every interval gives a quiver in this class.
- Reason 3: $k\mathcal{F}$ is tangible.
 - Simple construction of primitive orthogonal idempotents in $k\mathcal{F}$.
 - Geometry and topology of the arrangement gives minimal projective resolution of simple modules.
 - The Ext spaces of the simple modules can be easily computed.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Reason 4: They are Koszul algberas.
 - Theorem. $k\mathcal{F} \cong k\mathcal{Q}/I$ is a Koszul algebra. Its Koszul dual is the *incidence algebra* of \mathcal{Q}^{op} .

• Reason 4: They are Koszul algberas.

• Theorem. $k\mathcal{F} \cong k\mathcal{Q}/I$ is a Koszul algebra. Its Koszul dual is the *incidence algebra* of \mathcal{Q}^{op} .

• Reason 5: Explicit descriptions of the Tits and Euler forms.

ション ふゆ メ キャ キャ マ ちょうく

•
$$q(z) = \sum_{X} z_X^2 - \sum_{Y \leqslant X} z_X z_Y + \sum_{l(Y,X)=2} z_X z_Y.$$

•
$$\chi(z) = \sum_{Y \le X} (-1)^{l(Y,X)} z_X z_Y.$$

• Reason 4: They are Koszul algberas.

• Theorem. $k\mathcal{F} \cong k\mathcal{Q}/I$ is a Koszul algebra. Its Koszul dual is the *incidence algebra* of \mathcal{Q}^{op} .

• Reason 5: Explicit descriptions of the Tits and Euler forms.

•
$$q(z) = \sum_{X} z_X^2 - \sum_{Y < X} z_X z_Y + \sum_{l(Y,X)=2} z_X z_Y.$$

• $\chi(z) = \sum_{Y < X} (-1)^{l(Y,X)} z_X z_Y.$

* Reason 6: Hochschild cohomology is $HH^i(k\mathcal{F}) = 0$ for i > 0.

ション ふゆ メ キャ キャ マ ちょうく

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• Reason 7: $k\mathcal{F}$ is \mathbb{Z} -graded and graded by a lattice.

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

- Reason 7: $k\mathcal{F}$ is \mathbb{Z} -graded and graded by a lattice.
- Reason 8: There are interesting subclasses.
 - Coordinate hyperplane arrangements.
 - "Generic" hyperplane arrangements.
 - Reflection arrangements.

- Reason 7: $k\mathcal{F}$ is \mathbb{Z} -graded and graded by a lattice.
- Reason 8: There are interesting subclasses.
 - Coordinate hyperplane arrangements.
 - "Generic" hyperplane arrangements.
 - Reflection arrangements.
- Reason 9: Reflection arrangements ~> group actions!

(ロ) (型) (E) (E) (E) (O)

Reflection Arrangements

Reflection Arrangements

• *Reflection group* W: a group generated by reflections of \mathbb{R}^n .

Example: $W = S_n$ acting on \mathbb{R}^n by permuting coordinates.

$$\omega(x_1, x_2, \dots, x_n) = \left(x_{\omega(1)}, x_{\omega(2)}, \dots, x_{\omega(n)}\right).$$

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

Reflection Arrangements

• *Reflection group* W: a group generated by reflections of \mathbb{R}^n .

Example: $W = S_n$ acting on \mathbb{R}^n by permuting coordinates.

$$\omega(x_1, x_2, \dots, x_n) = (x_{\omega(1)}, x_{\omega(2)}, \dots, x_{\omega(n)}).$$

• *Reflection arrangement*: hyperplanes fixed by reflections in *W*.

Example: $W = S_n$; for each $1 \le i < j \le n$,

$$H_{ij} = \{ \vec{x} \in \mathbb{R}^n : x_i = x_j \}.$$

ション ふゆ メ キャ キャ マ ちょうく

Group actions

The W action on \mathbb{R}^n induces *two* actions of W on $k\mathcal{Q}$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Group actions

The W action on \mathbb{R}^n induces *two* actions of W on $k\mathcal{Q}$.

Action 1: Since vertices of Q correspond to intersections of the hyperplanes, W permutes the vertices of Q. This induces an action of W on Q.

Example: For $W = S_n$, the vertices of Q are set partitions. S_n acts on set partitions element-wise.

$$au_{1,3} \cdot \left(\{ 146, 5, 23 \} \to \{ 146, 235 \} \right) = \{ 346, 5, 21 \} \to \{ 346, 215 \}.$$

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

Group actions

Action 2: W permutes the hyperplanes in the reflection arrangement; so, W acts on the faces \mathcal{F} . This extends to an action of W on $k\mathcal{F} \cong k\mathcal{Q}/I$, which lifts to an action of W on $k\mathcal{Q}$.

Example: S_n action on faces (ordered set partitions):

$$\tau_{1,3} \cdot (7, 23, 56, 14) = (7, 21, 56, 34).$$

On kQ, combine Action 1 with a sign:

$$\omega(X_1 \to \cdots \to X_p) = \operatorname{sign}(\omega, X_1) \operatorname{sign}(\omega, X_p) \Big(\omega(X_1) \to \cdots \to \omega(X_p) \Big).$$

ション ふゆ メ キャ キャ マ ちょうく

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• $(k\mathcal{F})^{S_n}$ is the set of elements fixed under the action of S_n .

 $(12,3) + (13,2) + (23,1) \in (k\mathcal{F})^{S_n}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $(k\mathcal{F})^{S_n}$ is the set of elements fixed under the action of S_n .

$$(12,3) + (13,2) + (23,1) \in (k\mathcal{F})^{S_n}$$

• "Insert commas" morphism: order elements in each block.

 $(12,3) + (13,2) + (23,1) \mapsto (1,2,3) + (1,3,2) + (2,3,1).$

This gives an injective algebra morphism $(k\mathcal{F})^{S_n} \to (kS_n)^{op}$, viewing each summand as a permutation of $\{1, \ldots, n\}$.

ション ふゆ メ リン イロン シックション

• $(k\mathcal{F})^{S_n}$ is the set of elements fixed under the action of S_n .

$$(12,3) + (13,2) + (23,1) \in (k\mathcal{F})^{S_n}$$

• "Insert commas" morphism: order elements in each block.

 $(12,3) + (13,2) + (23,1) \mapsto (1,2,3) + (1,3,2) + (2,3,1).$

This gives an injective algebra morphism $(k\mathcal{F})^{S_n} \to (kS_n)^{op}$, viewing each summand as a permutation of $\{1, \ldots, n\}$.

• Reason 10: $(k\mathcal{F})^{S_n}$ is the descent algebra of S_n .

The descent algebra of S_n

• Defined by L. Solomon in 1976 for any finite Coxeter group.

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ ● の ○ ○

- It enjoys connections with:
 - the representation theory of the symmetric group;
 - the free Lie algebra;
 - probability theory;
 - Hochschild homology of algebras;
 - combinatorics;
 - hyperplane arrangements.

The quiver of $(k\mathcal{F})^{S_n}$

- Determined from the *signed* action of S_n on kQ.
- Lift action of S_n from kF to kQ via kQ → kF, and consider (kQ)^{S_n} → (kQ/I)^{S_n} ≅ (kF)^{S_n}.
- The vertices are the S_n -orbits of the vertices of Q.

•
$$[X] \to [Y] \text{ iff } \not\exists \omega \in S_n : \omega(X \to Y) = -(X \to Y).$$

ション ふゆ メ キャ キャ マ ちょうく

Partition lattice for n = 4.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Quiver of $(k\mathcal{F})^{S_n}$

• Vertices are *integer partitions* of n :

$$p_1 \ge p_2 \ge \cdots \ge p_i > 0$$
 with $\sum p_i = n$.

- $p \rightarrow q$ iff q is obtained from p by merging two distinct parts of p.
- For n = 4: 1111

- 1. Appear in nature; applications to random walks.
- 2. Every interval gives a quiver in this class.
- 3. $k\mathcal{F}$ is tangible.
- 4. They are Koszul algberas.
- 5. Explicit descriptions of the Tits and Euler forms.
- 6. Hochschild cohomology is $\operatorname{HH}^{i}(k\mathcal{F}) = 0$ for i > 0.

- 7. $k\mathcal{F}$ is \mathbb{Z} -graded and graded by a lattice.
- 8. There are interesting subclasses.
- 9. Reflection arrangements ~> group actions!
- 10. $(k\mathcal{F})^W$ is the descent algebra of W.

Some questions

Suppose G is a group acting on an algebra A.

- What can be said about A^G ?
- For $G = S_n$ and $A = k\mathcal{F}$ we have, for all $p \ge 0$,

$$\operatorname{rad}^p(A^G) = \operatorname{rad}^p(A) \cap A^G.$$

How often does this hold? Other reflection groups?

- How do you find the quiver of A^G knowing the quiver of A?
- Given the quiver, when can one find relations for A^G ?
- What about A * G?
- Gröbner bases?
- What does Koszul give you? The Koszul dual is very nice!

ション ふゆ メ リン イロン シックション

• Left regular bands: which give Koszul algebras?

I will be looking for a job in the Fall.

