
A Very Very Special Class of Algebras
(On a subalgebra of the group algebra of a finite Coxeter group)

Franco V Saliola

saliola@gmail.com

Université du Québec à Montréal

25 May 2007



Quivers from Hyperplane Arrangements



Quivers from Hyperplane Arrangements

R
3

Start in a finite dimensional real vector space R
n,



Quivers from Hyperplane Arrangements

R
3

{x = 0} {y = 0} {z = 0}

Start in a finite dimensional real vector space R
n,

together with a finite set of hyperplanes containing ~0.



Quivers from Hyperplane Arrangements

R
3

{x = 0} {y = 0} {z = 0}

{x = y = 0}

Start in a finite dimensional real vector space R
n,

together with a finite set of hyperplanes containing ~0.

Consider all possible intersections of the hyperplanes.



Quivers from Hyperplane Arrangements

R
3

{x = 0} {y = 0} {z = 0}

{x = y = 0} {x = z = 0}

Start in a finite dimensional real vector space R
n,

together with a finite set of hyperplanes containing ~0.

Consider all possible intersections of the hyperplanes.



Quivers from Hyperplane Arrangements

R
3

{x = 0} {y = 0} {z = 0}

{x = y = 0} {x = z = 0} {y = z = 0}

Start in a finite dimensional real vector space R
n,

together with a finite set of hyperplanes containing ~0.

Consider all possible intersections of the hyperplanes.



Quivers from Hyperplane Arrangements

R
3

{x = 0} {y = 0} {z = 0}

{x = y = 0} {x = z = 0} {y = z = 0}

{x = y = z = 0}

Start in a finite dimensional real vector space R
n,

together with a finite set of hyperplanes containing ~0.

Consider all possible intersections of the hyperplanes.



Quivers from Hyperplane Arrangements

R
3

{x = 0} {y = 0} {z = 0}

{x = y = 0} {x = z = 0} {y = z = 0}

{x = y = z = 0}

Start in a finite dimensional real vector space R
n,

together with a finite set of hyperplanes containing ~0.

Consider all possible intersections of the hyperplanes.



A second example

X

Y

Z



A second example

X

Y

Z

R
2



A second example

X

Y

Z

R
2

X Y Z



A second example

X

Y

Z

R
2

X Y Z

0



A second example

X

Y

Z

R
2

X Y Z

0



The braid arrangement

• Hyperplanes: Hij = {~x ∈ R
n : xi = xj} for 1 ≤ i < j ≤ n.



The braid arrangement

• Hyperplanes: Hij = {~x ∈ R
n : xi = xj} for 1 ≤ i < j ≤ n.

• Intersections of Hij correspond to set partitions of {1, . . . , n}:

H1,4 ∩ H2,3 ∩ H1,5 = {~x ∈ R
n : x1 = x4 = x5 and x2 = x3}



The braid arrangement

• Hyperplanes: Hij = {~x ∈ R
n : xi = xj} for 1 ≤ i < j ≤ n.

• Intersections of Hij correspond to set partitions of {1, . . . , n}:

H1,4 ∩ H2,3 ∩ H1,5 = {~x ∈ R
n : x1 = x4 = x5 and x2 = x3}

↔ {145|23} .



The braid arrangement

• Hyperplanes: Hij = {~x ∈ R
n : xi = xj} for 1 ≤ i < j ≤ n.

• Intersections of Hij correspond to set partitions of {1, . . . , n}:

H1,4 ∩ H2,3 ∩ H1,5 = {~x ∈ R
n : x1 = x4 = x5 and x2 = x3}

↔ {145|23} .

• For n = 3:
1|2|3

12|3 13|2 1|23

123



Partition lattice for n = 4.

1|2|3|4

12|3|4 13|2|4 14|2|3 1|23|4 1|24|3 1|2|34

12|34 123|4 124|3 13|24 134|2 14|23 1|234

1234

Recall: {13|24} = {~x ∈ R
4 : x1 = x3, x2 = x4}.
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Every interval of length two gives one relation:

the sum of the paths of length two in the interval.
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• Reason 1: They appear in nature.
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xy :=
face entered by moving a small distance

along a straight line from x towards y.

xy

x

y

b

b

Left Regular Band: an associative semigroup satisfying

x2 = x and xyx = xy.
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Faces of the braid arrangement

• Hyperplanes: Hij = {~x ∈ R
n : xi = xj}.

• Faces correspond to ordered set partitions of {1, 2, . . . , n}.

({2, 5, 7}, {1, 3}, {4, 6, 8, 9}) ↔ (257, 13, 4689)

• Product: intersect blocks in the partitions:

(34, 256, 17)(257, 134, 6) =
(

34, 25, 6, 7, 1
)

.

• Interest: product encodes random walks on the regions.

Probability Ã algebra!



Connection between F and Q

Theorem

Let k denote some field and let F denote the semigroup of faces of

a hyperplane arrangement. Then as k-algebras,

kF ∼= kQ/I.
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Ten reasons these algebras are interesting.

• Reason 1: Appear in nature; applications to random walks.

• Theorem. kF ∼= kQ/I.

• Reason 2: Every interval gives a quiver in this class.

• Reason 3: kF is tangible.

• Simple construction of primitive orthogonal idempotents in kF .
• Geometry and topology of the arrangement gives minimal

projective resolution of simple modules.
• The Ext spaces of the simple modules can be easily computed.
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Ten reasons these algebras are interesting.

• Reason 4: They are Koszul algberas.

• Theorem. kF ∼= kQ/I is a Koszul algebra.
Its Koszul dual is the incidence algebra of Qop.

• Reason 5: Explicit descriptions of the Tits and Euler forms.

• q(z) =
∑

X

z2
X −

∑

Y ⋖X

zXzY +
∑

l(Y,X)=2

zXzY .

• χ(z) =
∑

Y ≤X

(−1)l(Y,X)zXzY .

* Reason 6: Hochschild cohomology is HHi(kF) = 0 for i > 0.
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• Reason 7: kF is Z-graded and graded by a lattice.

• Reason 8: There are interesting subclasses.

• Coordinate hyperplane arrangements.
• “Generic” hyperplane arrangements.
• Reflection arrangements.

• Reason 9: Reflection arrangements Ã group actions!
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Reflection Arrangements

• Reflection group W : a group generated by reflections of R
n.

Example: W = Sn acting on R
n by permuting coordinates.

ω(x1, x2, . . . , xn) =
(

xω(1), xω(2), . . . , xω(n)

)

.

• Reflection arrangement: hyperplanes fixed by reflections in W .

Example: W = Sn; for each 1 ≤ i < j ≤ n,

Hij = {~x ∈ R
n : xi = xj}.
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Group actions

The W action on R
n induces two actions of W on kQ.

Action 1: Since vertices of Q correspond to intersections of the
hyperplanes, W permutes the vertices of Q. This induces an
action of W on Q.

Example: For W = Sn, the vertices of Q are set partitions.
Sn acts on set partitions element-wise.

τ1,3 ·
(

{146, 5, 23} → {146, 235}
)

= {346, 5, 21} → {346, 215} .



Group actions

Action 2: W permutes the hyperplanes in the reflection arrangement; so,
W acts on the faces F . This extends to an action of W on
kF ∼= kQ/I, which lifts to an action of W on kQ.

Example: Sn action on faces (ordered set partitions):

τ1,3 · (7, 23, 56, 14) = (7, 21, 56, 34) .

On kQ, combine Action 1 with a sign:

ω(X1 →· · · → Xp) =

sign(ω,X1)sign(ω,Xp)
(

ω(X1) → · · · → ω(Xp)
)

.
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• (kF)Sn is the set of elements fixed under the action of Sn.

(12, 3) + (13, 2) + (23, 1) ∈ (kF)Sn .

• “Insert commas” morphism: order elements in each block.

(12, 3) + (13, 2) + (23, 1) 7→ (1, 2, 3) + (1, 3, 2) + (2, 3, 1).

This gives an injective algebra morphism (kF)Sn → (kSn)op,

viewing each summand as a permutation of {1, . . . , n}.

• Reason 10: (kF)Sn is the descent algebra of Sn.



The descent algebra of Sn

• Defined by L. Solomon in 1976 for any finite Coxeter group.

• It enjoys connections with:

• the representation theory of the symmetric group;
• the free Lie algebra;
• probability theory;
• Hochschild homology of algebras;
• combinatorics;
• hyperplane arrangements.



The quiver of (kF)Sn

• Determined from the signed action of Sn on kQ.

• Lift action of Sn from kF to kQ via kQ → kF ,

and consider (kQ)Sn → (kQ/I)Sn ∼= (kF)Sn .

• The vertices are the Sn-orbits of the vertices of Q.

• [X] → [Y ] iff 6 ∃ω ∈ Sn : ω(X → Y ) = −(X → Y ).



Partition lattice for n = 4.

1|2|3|4

12|3|4 13|2|4 14|2|3 1|23|4 1|24|3 1|2|34

12|34 123|4 124|3 13|24 134|2 14|23 1|234

1234



Quiver of (kF)Sn

• Vertices are integer partitions of n :

p1 ≥ p2 ≥ · · · ≥ pi > 0 with
∑

pi = n.

• p → q iff q is obtained from p by merging two distinct parts of

p.

• For n = 4: 1111

211

31 22

4



Ten reasons these algebras are interesting.

1. Appear in nature; applications to random walks.

2. Every interval gives a quiver in this class.

3. kF is tangible.

4. They are Koszul algberas.

5. Explicit descriptions of the Tits and Euler forms.

6. Hochschild cohomology is HHi(kF) = 0 for i > 0.

7. kF is Z-graded and graded by a lattice.

8. There are interesting subclasses.

9. Reflection arrangements Ã group actions!

10. (kF)W is the descent algebra of W .



Some questions

Suppose G is a group acting on an algebra A.

• What can be said about AG?

• For G = Sn and A = kF we have, for all p ≥ 0,

radp(AG) = radp(A) ∩ AG.

How often does this hold? Other reflection groups?

• How do you find the quiver of AG knowing the quiver of A?

• Given the quiver, when can one find relations for AG?

• What about A ∗ G?

• Gröbner bases?

• What does Koszul give you? The Koszul dual is very nice!

• Left regular bands: which give Koszul algebras?



One last thing. . .

I will be looking for a job in the Fall.


