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Permutations : Definitions and Notations

Permutation : bijection o : {1,2,...,n} = {1,2,...,n}

Example : o(l)=3 o(2)=1 o(3)=2
) . 1 2 3

2-line notation : ( 3 1 2 )

1-line notation : 3 1 2

symmetric group &,, : group of permutations of {1,...,n}
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incy(o) = # {

increasing subsequences
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Example

o 123 | 132 | 213 | 231 | 312

increasing || 12 |13 |2 3|23 12
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of length 2 23
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increasing subsequences

Definition

incy(o) = # {

increasing subsequences
of length k in o

Example

o 123 | 132 | 213 | 231 | 312 | 321

increasing || 12 |13 |2 3|23 12
subsequences || 1 3|1 2| 13
of length 2 23

incy (o) 3121211 1/0
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Permutations

Motivation : Mysteries

for each n, we have a family of n matrices
Inc,, 1, Incp o, ..., Inc,,

each of which is n! x nl.

these arose from a problem in computer science

experimentation suggested some intriguing properties :
1. Inc,; Inc, ; = Inc, ; Inc, ;
2. the eigenvalues are non-negative integers

Questions : Is this true ? Why 7 What are these integers ?
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Some Surprises

they do commute !

o 2011 : we gave an enumerative, inductive proof

eigenvalues ?

o 2013 : recent work with Ton Dieker : explicit formulas

additional families of intriguing matrices :

o second family of matrices with similar properties
(obtained by replacing incy with another permutation statistic)

connections with probability and representation theory :
o card shuffling and related random walks

o representation theory of the symmetric group
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Permutations Card Shuffling Representation theory

random-to-random shuffle

deck of cards :
010903040506070809

remove a card at random :
03
0102 | 040506070809

insert the card at random :

l

010204050607030809
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Transition matrix of the random-to-random shuffle
entries : probability of going from o to 7 using one shuffle

123 132 213 231 312 321
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Transition matrix of the random-to-random shuffle
entries : probability of going from o to 7 using one shuffle

123 132 213 231 312 321
EEN A
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1 way to obtain 312 from 123 :

1 2 3
N S
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Card Shuffling

Representation theory

Transition matrix of the random-to-random shuffle
entries : probability of going from o to 7 using one shuffle

123
132
213
231
312
321

123 132 213 231 312 321
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Card Shuffling

Representation theory

Transition matrix of the random-to-random shuffle
entries : probability of going from o to 7 using one shuffle

123 132 213 231 312 321

23(3 2 2 1 1 0 )

3212 3 1 0 2 1

2302 1 3 2 0 1| 1

2311 0 2 3 1 2 9

31211 2 0 1 3 2

321 \ o 1 1 2 2 3)
(renorm.)

(Incn,n—l

random-to-random sh uffle)




Card Shuffling
Properties of the transition matrix

The transition matrix T governs properties of the random walk.

typical questions +— algebraic properties
probability after m steps <+— entries of T™
long-term behaviour —> eigenvectors T
(limiting distribution) st.7T=7
rate of convergence —> governed by

vTT" — 7 eigenvalues of T
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Card Shuffling

Representation theory
product of two faces

the face first encountered after a small
Ty =

movement along a line from x toward y

X




Permutations Card Shuffling Representation theory

Special Case : The “Braid” Arrangement

hyperplanes : Hi;={veR":v; =v,}



Permutations Card Shuffling Representation theory

Special Case : The “Braid” Arrangement

hyperplanes : Hi;={veR":v; =v,}

e consider a vector ¥ that belongs to a chamber



Permutations Card Shuffling Representation theory

Special Case : The “Braid” Arrangement

hyperplanes : H; ;= {veR":v; = Uj}
e consider a vector ¥ that belongs to a chamber
e we can order the entries of ¥ in increasing order; e.g. :

Vs < U1 < V3 <V <y



Permutations Card Shuffling Representation theory

Special Case : The “Braid” Arrangement

hyperplanes : H; ;= {veR":v; = Uj}
e consider a vector ¥ that belongs to a chamber
e we can order the entries of ¥ in increasing order; e.g. :
Vs <V < V3 <V <4
e so chambers correspond to permutations :

Vs < V] < U3 < Uy < Uy [5,1,3,2,4}



Permutations Card Shuffling Representation theory

Special Case : The “Braid” Arrangement

hyperplanes : H; ;= {veR":v; = Uj}
e consider a vector ¥ that belongs to a chamber
e we can order the entries of ¥ in increasing order; e.g. :
Vs <V < V3 <V <4
e so chambers correspond to permutations :

Vs < V] < U3 < Uy < Uy [5,1,3,2,4}

o if ' lies on H; ;, then v; < v; becomes v; = v; :

V1 = V5 <V =03 < Vg < [{1, 5}, {2,3}, {4}]
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Special Case : The “Braid” Arrangement

combinatorial description :

faces <> ordered set partitions of {1,...,n} :

[{2,3}, {4}, {1,5}] # [{4}.{1,5},{2,3}]

chambers <> partitions into singletons

{2}, {3}, {4} {1}, {5}]

product <> intersection of sets in the partition
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Product of set compositions
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Product of set compositions
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Product of set compositions

{2.511,3,4,6} |- [{4HIHEHEH3}2}

= [{sH2HU 1613}
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Product of set compositions

{2.5H1,3,4,6} |- [{4HIHEHEH3}2}

= [(5HeHO {1 H6H3}Y
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A step in the random walk :

starting from an element c,
pick an element y at random,
and move to y X c.

Example :

{2.5}{1,3.4,6}) x [1,2.3,4,5
2,5,1,3,4,
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| =1[2,1,6,5,3,4]



Permutations Card Shuffling Representation theory

Random walks on hyperplane arrangements

A step in the random walk :

starting from an element c,
pick an element y at random,
and move to y X c.

Example :
[{2,5}{1,3,4,6}] x [1,2,3,4,5,6] =[2,5,1,3.4,0]

[{1,2,6}{3,4,5}] x [2.5.1.3.4.6] = [2,1,6,5,3, 4]
2,1,6,5,3,4]



Permutations Card Shuffling Representation theory

Random walks on hyperplane arrangements
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Random walks on hyperplane arrangements

A step in the random walk :

starting from an element c,
pick an element y at random,
and move to y X c.

Example :
[{2,5}{1,3,4,6}] x [1,2,3,4,5,6] =[2,5,1,3.4,0]

[{1,2,6}{3,4,5}] x [2.5.1.3.4.6] = [2,1,6,5,3, 4]
[{3}{172747 576}] >< [27 176757 374] - [3727 ]‘767 574]
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Random walks on hyperplane arrangements

A step in the random walk :

starting from an element c,
pick an element y at random,
and move to y X c.

Example :

[{2,51{1,3,4,6}] x [1,2,3,4,5,6] = (2,5, 1,3,4,6]
L2, 6H{3,4,5] X [2.5.1.5.4.0 = [2,1,6,5.3.4
[{3}{1,2,4,5,6}] x [2,1,6,5,3,4] =[3,2,1,6,5, 4]

(Inverse) Riffle Shuffle and Random-to-Top
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Random walks on hyperplane arrangements

Introduced by Bidigare-Hanlon—Rockmore (1999) :

o computed eigenvalues of the transition matrices

o presents a unified approach to several random walks
Further developed by Brown—Diaconis (1998) :

o described stationary distribution

o proved diagonalizability of transition matrices
Extended by Brown (2000) :

o extended results to larger class of examples

o used algebraic techniques and representation theory
Others :

Bjorner, Athanasiadis-Diaconis, Chung-Graham, ...
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Inc,,  and hyperplane chamber walks

Theorem (Reiner-S—Welker 2011)
t
InCn,k - Tk’ Tk’

where T} is the transition matrix of a random
walk on the braid arrangement.

(Consequently, ker(Inc,, ;) = ker(Tk)J
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Representation Theory

A representation of a group G is a group homomorphism
p: G — Maty

That is,
e p(g)is a (d x d)—matrix

e p(gh) = p(g)p(h)

Examples :
e trivial representation :
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Regular representation of &3

rL - ... N -1 7
P P 1. -« ..
p(123) = |1 p(132) = |t
R RS
r 1. - -7 M- - -1 T
B P [ IS 1
p(213) = ?iiiii p(231) = i?::i:
i I
— 1. .. 17
P IR R R
p(312) = |1 ! p(321) = | i1
RN EREREE
322110
231021
3p(123) + 2p(132) + 2p(213) + 1p(231) + 1p(312) = 21329}
120132
011223
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Inc,, , and the regular representation of &,,

Theorem (Reiner-S—Welker 2011)

Inc, j = Z incy (o) reg(o)

ce6,

where reg is the regular representation of G,,.
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Calculation of eigenvalues via irreducibles

(decompose the regular representation into irreducible representations)

3-123 2-132 2-213 1-231 1-312

trivial :

3-[1] +2- 1] +2-[1] +1-[1] +1-[1]

- [9
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Calculation of eigenvalues via irreducibles

(decompose the regular representation into irreducible representations)

3-123 2-132 2-213 1-231 1-312

sign :

3-1] +2-[-1] +2-[-1] +1-[1] +1-[1]

- [1)
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Calculation of eigenvalues via irreducibles

(decompose the regular representation into irreducible representations)

3-123 2-132 2-213 1-231 1-312

X :
BE+24 %] + 2[4 L+ [ ]

4 =2
- [0 0 } (eigs(lﬂ%z) = {9, 1,4,4,0,0})
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Final Remarks

e This research was facilitated by computer exploration with the
math. software Sage (sagemath.org) and Sage-Combinat :

to test the conjectures

to compute the eigenvalues of the matrices

to construct irreducible representations of G,

to decompose the eigenspaces into irreducible representations

to search for other transition matrices with these properties

to provide ideas for proofs

e Second family of random walks with similar properties.
Our analysis combines what we've seen today :
e BHR theory of random walks to analyze the kernels; and
e representation theory to analyze the other eigenspaces.
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