Feuille d'exercices 11

Exercice 1. Soient \mathbb{R}^* le groupe (multiplicatif) de nombres réels non nuls et \mathbb{R}^+ le groupe (multiplicatif) de nombres réels positifs. Montrer que $\mathbb{R}^*/\{1,-1\} \cong \mathbb{R}^+$.

(Indice: premier théorème d'isomorphisme.)

Exercice 2. Montrer que $GL_2(\mathbb{C})/Z \cong SL_2(\mathbb{C})/\{\pm I_2\}$, où $Z = \{aI_2 : a \in \mathbb{C}^*\}$, et décrire explicitement l'isomorphisme.

(Indice: on prend $G = \mathrm{GL}_2(\mathbb{C})$, $H = \mathrm{SL}_2(\mathbb{C})$ et N = Z dans le deuxième théorème d'isomorphisme.)

Exercice 3. Soient G un groupe fini et $H \triangleleft G$ tel que $\operatorname{pgcd}(|H|, [G:H]) = 1$. Montrer que H est l'unique sous-groupe de G d'ordre |H|. (Indice : théorème de correspondance.)

Exercice 4.

On dit qu'un sous-groupe normal H de G est un sous-groupe normal maximal de G si $H \neq G$ et si $H \leq K \leq G$ entraîne K = H ou K = G.

Montrer que $H \triangleleft G$ est un sous-groupe normal maximal de G ssi G/H ne possède pas de sous-groupe normal à part que G/H et $\{H\}$. (Indice: théorème de correspondance.)

Exercice 5. Soient H et K deux sous-groupe d'un groupe G. Montrer que si K est un sous-groupe normal de G, alors HK = KH et HK est un sous-groupe de G.

Exercice 6. Soient G et H des groupes abéliens. Montrer que $G \times H$ est abélien.

Exercice 7. Soient $f: G \to G'$ et $g: H \to H'$ des homomorphismes de groupes.

- a. Montrer que l'application $h: G \times G' \to H \times H'$ défini par h(a,b) = (f(a),g(b)) est un homomorphisme de groupes.
- b. Calculer le noyau et l'image de h.
- c. En déduire que si f et g sont des isomorphismes, alors h est un isomorphisme.

Exercice 8. Soient G et H des groupes. Montrer que $G \times H \cong H \times G$.

Exercice 9. Soient G et H deux groupes. Déterminer les éléments $h \in H$ qui font de l'application $i_h : G \to G \times H$ définie par $i_h(g) = (g,h)$ un homomorphisme de groupes. Déterminer le noyau et l'image de ce homomorphisme.

Exercice 10. Soient H et K deux groupes, $H' \triangleleft H$ et $K' \triangleleft K$.

- a. Montrer que $H' \times K'$ est un sous-groupe normal de $H \times K$.
- b. Montrer que $(H \times K)/(H \times \{e\}) \cong K$.
- c. Montrer que $(H \times K)/(H' \times K')$ est isomorphe à $(H/H') \times (K/K')$.

Exercice 11. Soient H et K deux groupes, $H' \triangleleft H$ et $K' \triangleleft K$.

- a. Montrer que $H'(H \cap K')$ est un sous-groupe normal de $H'(H \cap K)$.
- b. Montrer que $K'(K \cap H')$ est un sous-groupe normal de $K'(K \cap H)$.
- c. Montrer que l'on a un isomorphise de groupes quotients :

$$H'(H \cap K) / H'(H \cap K') \cong K'(H \cap K) / K'(H' \cap K)$$

Exercice 12. Soient H et K deux sous-groupes normaux d'un groupe G. Montrer que G est isomorphe au produit direct (externe) $H \times K$ ssi tout élément $a \in G$ admet une unique expression sous la forme a = hk avec $h \in H$ et $k \in K$.

Exercice 13. Soit $G \cong H \times K$ le produit direct interne de sous-groupes H et K de G. Soit N un sous-groupe normal de G. Montrer que N est abélien ou $H \cap N \neq \{e\}$ ou $K \cap N \neq \{e\}$.

Exercice 14. Donner un exemple d'un groupe $H \times K$ qui contient un sous-groupe normal N tel que $H \cap N = \{e\}$ et $K \cap N = \{e\}$. En déduire que si $N \triangleleft H \times K$, alors il est possible que $N \neq (N \cap H) \times (N \cap K)$.