Feuille d'exercices 7

Exercice 1. Trouver un sous-groupe du groupe symétrique S_4 isomorphe à $(\mathbb{Z}/8\mathbb{Z})^{\times}$.

Exercice 2. Soit H le sous-groupe suivante du groupe symétrique S_4 :

$$H = \{(), (1,2), (3,4), (1,2)(3,4)\}.$$

- a. À l'aide du Théorème de Cayley, trouver un sous-groupe V de S_4 tel que $V\cong H$ et $V\neq H$.
- b. Montrer qu'il existe $\sigma \in S_4$ tel que $\sigma H \neq H \sigma$.
- c. Montrer que $\sigma V = V \sigma$ pour tout $\sigma \in S_4$.

Exercice 3. Calculer $[3\mathbb{Z}:15\mathbb{Z}]$.

Exercice 4. Soient G un groupe, H un sous-groupe de G et $g \in G$. Montrer que gH = H ssi $g \in H$.

Exercice 5. Soit $m \geq 3$. À l'aide du théorème de Lagrange, montrer que l'ordre du groupe $(\mathbb{Z}/m\mathbb{Z})^{\times}$ est pair.

Exercice 6. Soient G un groupe fini et H et K des sous-groupes de G tels que $\operatorname{pgcd}(|H|, |K|) = 1$. Montrer que $H \cap K = \{e\}$, où e est l'élément neutre de G.

Exercice 7. Soient G un groupe et $f: G \to \mathbb{Z}/2\mathbb{Z}$ un morphisme de groupes surjectif. Montrer que $[G: \ker(f)] = 2$.