Feuille d'exercices 9

Exercice 1. Soient G un groupe et H un sous-groupe de G. Montrer que les propositions suivantes sont équivalentes.

- $a. H \triangleleft G.$
- b. $gHg^{-1} = H$ pour tout $g \in G$.
- c. $gHg^{-1} \subseteq H$ pour tout $g \in G$.
- d. $ghg^{-1} \in H$ pour tout $g \in G$ et pour tout $h \in H$.

Exercice 2. Soit $\mathrm{SL}_n^{\pm}(\mathbb{R})$ l'ensemble des matrices $n \times n$ de déterminant 1 ou -1. Montrer que $\mathrm{SL}_n^{\pm}(\mathbb{R})$ est un sous-groupe normal de $\mathrm{SL}_n(\mathbb{R})$ et un sous-groupe normal de $\mathrm{GL}_n(\mathbb{R})$.

Exercice 3. Soient H et K deux sous-groupe de G tels que $H \leq K$. Montrer que si $H \triangleleft G$, alors $H \triangleleft K$.

Exercice 4. Soit $H = \{(), (1,3)(2,4)\} \subseteq S_4$.

- a. Montrer que H est un sous-groupe de S_4 qui n'est pas normal dans S_4 .
- b. Montrer que H est un sous-groupe normal de $V = \{(), (1,3)(2,4), (1,2)(3,4), (1,4)(2,3)\}.$

Exercice 5. Soit $Q = \{1, -1, i, -i, j, -j, k, -k\}$ muni de l'opération pour laquelle : 1 est l'élément neutre de Q; (-1)x = -x = x(-1) pour tout $x \in Q$; et $i^2 = j^2 = k^2 = ijk = -1$.

- a. Montrer que Q est isomorphe au groupe défini dans Exercice 3 de la Feuille d'Exercices 5.
- b. Montrer que tout sous-groupe de Q est normal dans Q.

Exercice 6. Soit H un sous-groupe de G tel que $\varphi(H) = H$ pour tout automorphisme φ de G. Montrer que H est un sous-groupe normal de G.

Exercice 7. Soit N un sous-groupe normal de G. Si n = [G : N] est fini, montrer que $g^n \in N$ pour tout $g \in G$.

Exercice 8. Soit H un sous-groupe de \mathbb{Q} . Montrer que si $[\mathbb{Q}:H]$ est fini, alors $H=\mathbb{Q}$.

Exercice 9. Soient $n \in \mathbb{N}^*$ et G un groupe fini tel que $(xy)^n = x^ny^n$ pour tous $x, y \in G$. On définit deux sous-ensemble de G:

$$G^{(n)} = \{x^n : x \in G\}$$

$$G_{(n)} = \{z \in G : z^n = e\}.$$

Montrer que $G_{(n)}$ et $G^{(n)}$ sont des sous-groupes normaux de G.

Exercice 10. Soit

$$T = \{ z \in \mathbb{C} : ||z|| = 1 \},$$

où ||z|| est le module d'un nombre complexe z.

- a. Montrer que T est un sous-groupe normal de \mathbb{C}^* .
- b. Montrer que $T \cong \mathbb{R}/\mathbb{Z}$.

Exercice 11. Soit H un sous-groupe d'un groupe G. Le cœur de H dans G est

$$H^{\heartsuit} = \bigcap_{g \in G} gHg^{-1}.$$

- a. Montrer que H^{\heartsuit} est un sous-groupe de G contenu dans H.
- b. Montrer que H^{\heartsuit} est normal dans G.
- c. Montrer que si N est un sous-groupe normal de G tel que $N \subseteq H$, alors $N \subseteq H^{\heartsuit}$. (Autrement dit, H^{\heartsuit} est le plus grand sous-groupe normal de G contenu dans H.)
- d. En déduire que $H \triangleleft G$ ssi $H^{\heartsuit} = H$.