Feuille d'exercices 13

Théorème des résidus

Exercice 1.

Soit r > 1 et γ le segment de -r à r composé avec le demi-cercle $re^{\pi t}$ pour $t \in [0,1]$.

- a. Calculer le résidu de $\frac{1}{z^2+1}$ en i.
- b. Calculer l'indice de i par rapport à γ .
- c. Évaluer l'intégrale

$$\int_{\gamma} \frac{1}{z^2 + 1} \, dz.$$

(Solutions: $-\frac{i}{2}$; 1; π .)

Exercice 2.

Soit r > 2 et γ le segment de -r à r composé avec le demi-cercle $re^{\pi t}$ pour $t \in [0,1]$, et

$$f(z) = \frac{2z^2 - 1}{(z^2 + 1)(z^2 + 4)}.$$

- a. Calculer les résidus de f(z) en i et en 2i.
- b. Calculer l'indice de i et 2i par rapport à γ .
- c. Évaluer l'intégrale

$$\int_{\gamma} \frac{2z^2 - 1}{(z^2 + 1)(z^2 + 4)} \, dz.$$

d. En déduire que

$$\int_{-\infty}^{\infty} \frac{2x^2 - 1}{(x^2 + 1)(x^2 + 4)} \, dx = \frac{\pi}{2}.$$

Indice: Utiliser l'estimation standard pour montrer que l'intégrale de f(z) le long le demi-cercle $re^{\pi t}$ pour $t \in [0,1]$ converge vers 0 quand $r \to \infty$.

(Solutions: $\frac{i}{2}$ et $-\frac{3i}{4}$; 1 et 1; $\frac{\pi}{2}$.)

Exercice 3.

Soit γ le segment de -r à r composé avec le demi-cercle $re^{\pi t}$ pour $t \in [0,1]$. Évaluer

$$\int_{\gamma} \frac{e^{iz}}{(z^2+1)^2} \, dz.$$

(Solution: $\frac{\pi}{e}$.)