Feuille d'exercices 6

Principe de zéros isolés

Exercice 1. Soit U un ouvert de \mathbb{C} et soit f une fonction analytique sur U. Montrer que tout sous-ensemble compact de U ne contient qu'un nombre fini de zéros de la fonction f.

Exercice 2. Supposons que $g: \mathbb{C} \to \mathbb{C}$ soit une fonction continue telle que $g(z) = g\left(\frac{z}{2}\right)$ pour tout $z \in \mathbb{C}$. Montrer que g est constante sur \mathbb{C} .

Exercice 3. Soit f, g des fonctions analytiques sur un ouvert connexe U. Montrer que si f(z)g(z)=0 pour tout $z\in U$, alors f(z)=0 pour tout $z\in U$ ou g(z)=0 pour tout $z\in U$.

Principe de prolongement analytique

Exercice 4. Montrer que la série entière

$$\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^{n+1} \left(z + \frac{1}{2}\right)^n$$

est une prolongement analytique de la série entière

$$\sum_{n=0}^{\infty} z^n.$$

Tracer les disques de convergence des deux séries dans le plan complexe.

Exercice 5. Soit les séries entières :

$$\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}} \qquad \sum_{n=0}^{\infty} \frac{(z-i)^n}{(2-i)^{n+1}}$$

- a. Calculer les rayons de chaque série.
- b. Tracer les disques de convergence dans le plan complexe.
- c. Montrer que les séries sont des prolongements analytiques l'une de l'autre.

Pour le fun

Exercice 6. Montrer que
$$\sum_{n=0}^{\infty} \frac{n^2}{2n!} = e$$
.

^{1.} Pour les étudiants de MAT2260 : autrement dit, l'anneau de fonctions analytiques sur U ne contient pas des diviseurs de zéros.