Problème 1 de l'examen final

Problème 1. Soit U un ouvert simplement connexe de \mathbb{C} .

- (a) Soit $f: U \to \mathbb{C}$ une fonction holomorphe qui ne s'annule pas sur U. Montrer que $\frac{f'}{f}$ possède une primitive holomorphe sur U.
- (b) Soit $f:U\to\mathbb{C}$ une fonction holomorphe qui ne s'annule pas sur U. Montrer qu'il existe une fonction F qui est holomorphe sur U telle que $e^{F(z)}=f(z)$ pour tout $z\in U$. (Indice: Étudier $f(z)e^{-G(z)}$, où G est une primitive holomorphe de $\frac{f'}{f}$.)
- (c) Soit $z_0 \in U$ et h une fonction holomorphe sur $U \setminus \{z_0\}$ telle que :
 - h ne s'annule pas sur $U \setminus \{z_0\}$; et
 - h possède un pôle d'ordre m > 0 en z_0 .

Montrer que si γ est un lacet dans $U \setminus \{z_0\}$, alors

$$\int_{\gamma} \frac{h'(z)}{h(z)} dz = -2\pi i \, m \operatorname{Ind}_{\gamma}(z_0).$$

(Piste: trouver une fonction f telle que $h(z) = (z - z_0)^{-m} f(z)$ au voisinage de z_0 .)