Feuille d'exercices 1

Exercice 1. Soit $E = \mathbb{R}$ muni de l'opération a * b = ab + a + b.

- a. Est-ce que * est associative?
- b. Est-ce que * est commutative?
- c. Est-ce que $(\mathbb{R},*)$ possède un élément neutre?
- d. Lesquels des sous-ensembles suivants de \mathbb{R} sont stables pour * (rappel : S est stable pour * si $a * b \in S$ pour tous $a, b \in S$)?
 - $S = \mathbb{N}$ (nombres naturels—v compris 0)
 - $S = \mathbb{Q}^-$ (nombres rationnels negatifs)
 - $S = (\mathbb{Q}^+)^*$ (nombres rationnels positifs et non nul)
 - $S = \mathbb{R}$ (nombres réels)
 - $S = n\mathbb{Z}$ (multiples entier de $n \in \mathbb{N}$)

Exercice 2. Soit $E = \operatorname{Mat}_n(\mathbb{R})$, l'ensemble des matrices carrées $n \times n$ muni de l'opération $A \star B = AB + I_n$, où I_n est la matrice identité $n \times n$.

- a. Déterminer si * est associative?
- b. Déterminer si * est commutative?
- c. Existe-t-il un élément neutre pour *?

Exercice 3. Soit E un ensemble non vide et $\mathcal{P}(\mathsf{E})$ l'ensemble des sous-ensembles de E. Si A et B sont deux sous-ensembles de E, on définit

$$A \Delta B = (A \cup B) \setminus (A \cap B).$$

Par exemple, si $\mathsf{E} = \{a, b, c\}$, alors

$$\mathcal{P}(\mathsf{E}) = \Big\{\left.\{\right\}, \quad \left\{a\right\}, \quad \left\{b\right\}, \quad \left\{c\right\}, \quad \left\{a,b\right\}, \quad \left\{a,c\right\}, \quad \left\{b,c\right\}, \quad \left\{a,b,c\right\}\Big\},$$

et on obtient la table à la page suviante.

- a. Expliquer pourquoi Δ est une opération sur $\mathcal{P}(\mathsf{E})$.
- b. Expliquer pourquoi Δ est une opération associative sur $\mathcal{P}(\mathsf{E})$.
- c. Identifier un élément neutre pour $(\mathcal{P}(\mathsf{E}), \Delta)$.
- d. Expliquer pourquoi $(\mathcal{P}(\mathsf{E}), \Delta)$ est un groupe.
- e. Déterminer si Δ est commutative sur $\mathcal{P}(\mathsf{E})$.
- f. Est-ce que ses propriétés sont valables pour tout ensemble fini E?

Δ	{}	$\{a\}$	$\{b\}$	$\{c\}$	$\{a,b\}$	$\{a,c\}$	$\{b,c\}$	$\{a,b,c\}$
{}	{}	$\{a\}$	$\{b\}$	$\{c\}$	$\{a,b\}$	$\{a,c\}$	$\{b,c\}$	$\{a,b,c\}$
$\{a\}$	{a}	{}	$\{a,b\}$	$\{a,c\}$	$\{b\}$	$\{c\}$	$\{a,b,c\}$	$\{b,c\}$
$\{b\}$	{b}	$\{a,b\}$	{}	$\{b,c\}$	$\{a\}$	$\{a,b,c\}$	$\{c\}$	$\{a,c\}$
$\{c\}$	$\{c\}$	$\{a,c\}$	$\{b,c\}$	{}	$\{a,b,c\}$	$\{a\}$	$\{b\}$	$\{a,b\}$
$\{a,b\}$	$\{a,b\}$	$\{b\}$	$\{a\}$	$\{a,b,c\}$	{}	$\{b,c\}$	$\{a,c\}$	$\{c\}$
$\{a,c\}$	$\{a,c\}$	$\{c\}$	$\{a,b,c\}$	$\{a\}$	$\{b,c\}$	{}	$\{a,b\}$	$\{b\}$
$\{b,c\}$	$\{b,c\}$	$\{a,b,c\}$	$\{c\}$	$\{b\}$	$\{a,c\}$	$\{a,b\}$	{}	$\{a\}$
$\{a,b,c\}$	$\bigg \; \{a,b,c\}$	$\{b,c\}$	$\{a,c\}$	$\{a,b\}$	$\{c\}$	$\{b\}$	$\{a\}$	{}

Règles de calcul

Exercice 4. Soit G un groupe dont l'élément neutre est noté e. Pour chaque énoncé, déterminer s'il est vrai ou faux. S'il est vrai, expliquer pourquoi il est vrai. S'il est faux, donner un contre-exemple. (Indice : consultez les tables de multiplication calculées en classe.)

- a. Si $x \in G$ et $x^2 = e$, alors x = e.
- b. Si $x \in G$ et $x^2 = x$, alors x = e.
- c. Si $x, a \in G$ et $x^2 = a^2$, alors x = a.
- d. Pour tous $a, b \in G$, on a $(ab)^2 = a^2b^2$.
- e. Pour tout $x \in G$, il existe $y \in G$ tel que $x = y^2$.
- f. Pour tous $x, y \in G$, il existe un élément $z \in G$ tel que y = xz.

Exercice 5. Soit G un groupe dont l'élément neutre est noté e. Si a et b sont des éléments de G tel que $a^5 = e$ et $a^3b = ba^3$, montrer que

$$a^6b = ba^6$$
 et $ab = ba$.

Exercice 6. Soit G un groupe dont l'élément neutre est noté e. Montrer que si $x^2 = e$ pour tout $x \in G$, alors G est un groupe abélien (commutatif).