Feuille d'exercices 11

Rappel: Liens entre idéaux maximaux, idéaux premiers et anneaux quotients

Exercice 1. Soit A un anneau et I un idéal de A.

- a. Montrer que I est premier ssi A/I est un anneau intègre.
- b. Montrer que I est premier ssi $I \neq A$ et $x, y \in A \setminus I$ implique que $xy \in A \setminus I$.

Exercice 2. Soit A un anneau et M un idéal de A.

- a. Montrer que M est maximal ssi A/M est un corps.
- b. Montrer que si M est maximal, alors M est premier.

Exercice 3. Soit K un corps commutatif et $p(x) \in K[x]$. Montrer que p(x) est irréductible sur K ssi l'idéal p(x)K[x] est un idéal maximal de K[x].

Exercice 4. $\mathbb{R}[x]/\langle x^2-1\rangle$ n'est ni un corps ni un anneau intègre.

Anneaux intègres, divisibilité, éléments associés

Exercice 5. Soit A un anneau intègre et $a, b, c \in A$.

- a. Montrer que a divise 0 et que 1 divise a.
- b. Montrer que a divise 1 ssi a est inversible dans A.
- c. Montrer que si a divise b, alors ac divise bc.
- d. Montrer que si a divise b et c, alors a divise sb + tc pour tous $s, t \in A$.

Exercice 6. Soit A un anneau intègre.

- a. Montrer que a et b sont associés ssi il existe $u \in A$ inversible tel que a = ub.
- b. Est-ce que la partie précédente est valable si A n'est pas intègre?

Anneaux euclidiens

Exercice 7. Soit A un anneau euclidien de valuation φ . Montrer que si a est un diviseur propre de b (c'est-à-dire, b = ax avec a non inversible et non associé à b), alors $\varphi(a) < \varphi(b)$.

Exercice 8. Soit A un anneau euclidien de valuation φ et $a \in A$ un élément non nul et non inversible. Montrer, par récurrence sur $\varphi(a)$, que a est un produit d'éléments irréductibles.

Anneaux principaux

Exercice 9. Soit A un anneau principal et $a, b \in A$. Alors, a et b possèdent un pgcd d qui s'exprime sous la forme d = sa + tb avec $s, t \in A$.

Exercice 10. Soit A un anneau principal et $a, b, c \in A$. Montrer que si $b \mid ac$ et pgcd(a, b) = 1, alors $b \mid c$.