Feuille d'exercices 7

Polynômes irréductibles sur un corps commutatif K

Exercice 1. Soit p(x) et q(x) des polynômes dans K[x], où K est un corps commutatif. Vrai ou faux : Si p(x) et q(x) ont les mêmes racines dans K, alors p(x) est un multiple scalaire de q(x).

Exercice 2. Soit p(x) et q(x) des polynômes dans K[x] du même degré d, où K est un corps commutatif. Montrer que si p(a) = q(a) pour d valeurs distinctes de $a \in K$, alors p(x) = q(x).

Exercice 3. Soit K un corps commutatif et $p(x) \in K[x]$. Montrer que p(x) est irréductible sur K ssi p(x+k) est irréductible sur K pour tout $k \in K$.

Polynômes irréductibles sur Q

Exercice 4.

- a. Déterminer si le polynôme $p(x) = 2x^4 + 3x^2 2$ possède des racines rationnelles.
- b. Existe-il une factorisation non triviale de p(x) sur \mathbb{Z} ?

Exercice 5. Trouver les racines rationnelles des polynômes suivants.

$$a(x) = 3x^4 - 2x^3 - 12x^2 + 15x - 14$$

$$b(x) = x^4 - 2x^3 - 8x^2 + 13x - 24$$

$$c(x) = 4x^4 - 7x^2 - 5x - 1$$

Exercice 6. Trouver toutes les valeurs de m pour lesquelles le polynôme $3x^2 + mx - 5 \in \mathbb{Q}[x]$ n'est pas irréductible.

Exercice 7. Montrer que tout polynôme de la forme $x^2 + bx + c \in \mathbb{Z}[x]$ où $b^2 - 4c$ n'est pas un carré parfait est irréductible sur \mathbb{Q} .

Critère d'Eisenstein

Exercice 8. Montrer que les polynômes suivants sont irréductibles sur Q.

a.
$$\frac{2}{3}x^5 + \frac{1}{2}x^4 - 2x^2 + \frac{1}{2}$$

b.
$$\frac{1}{5}x^4 - \frac{1}{3}x^3 - \frac{2}{3}x^2 + 1$$

Exercice 9.

a. Montrer que $x^4 + 4x + 1$ est irréductible sur \mathbb{Q} .

(Indice: Considérer le polynôme $(x+1)^4 + 4(x+1) + 1$.)

- b. Montrer que les polynômes suivants sont irréductibles sur $\mathbb Q$:
 - (a) $x^4 + 2x^2 1$
- (b) $x^3 3x^2 + 1$
- (c) $x^4 + 1$

(Indice: Faire une substitution.)

Exercice 10. Soit $n \ge 1$ un entier. On définit

$$\Phi_n(x) = \frac{x^n - 1}{x - 1} = x^{n-1} + x^{n-2} + \dots + x + 1.$$

- a. Montrer que si k et l sont copremiers, alors le pgcd de $x^k 1$ et $x^l 1$ est x 1.
- b. Montrer que si k et l sont copremiers, alors $(x^k-1)(x^l-1)$ divise $(x-1)(x^{kl}-1)$.
- c. Montrer que si n n'est pas premier, alors Φ_n n'est pas irréductible.
- d. Montrer que si n est premier Φ_n est irréductible sur \mathbb{Q} .

(Indice: faire la substitution x = y + 1.)