Feuille d'exercices : Théorème de Maschke

Exercice 1. Soit V un espace vectorial sur \mathbb{C} . Un produit scalaire complexe sur V est un application

$$\begin{array}{ccc} V \times V & \longrightarrow & \mathbb{C} \\ (u, v) & \longmapsto & \langle u, v \rangle \end{array}$$

telle que

- $\langle u,v\rangle = \overline{\langle v,u\rangle}$, où \overline{z} dénote le conjugué complexe d'un nombre complexe z;
- $\langle \alpha u + \alpha' u', v \rangle = \alpha \langle u, v \rangle + \alpha' \langle u', v \rangle$ pour $\alpha, \alpha' \in \mathbb{C}$ et $u, u', v \in V$;
- $\langle u, u \rangle > 0$ si $u \neq 0$.

Étant donné une représentation $\rho: G \to \mathrm{GL}(V)$, on définit une application $V \times V \to \mathbb{C}$ par

$$(u,v) = \sum_{g \in G} \langle \rho(g)u, \rho(g)v \rangle.$$

- a. Vérifier que cette application est un produit scalaire complexe sur V.
- b. Montrer que $(u, v) = (\rho(g)u, \rho(g)v)$ pour tout $g \in G$ et tous $u, v \in V$.
- c. Soit W un sous-module de V. On définit

$$W^{\perp} = \{ v \in V : (v, w) = 0 \text{ pour tout } w \in W \}.$$

Montrer que W^{\perp} est un sous-module de V.

- d. Montrer que V est somme directe de W et W^{\perp} .
- e. En déduire le Théorème de Maschke : si W est un sous-module de V, alors il existe un sous-module U de V tel que $V=W\oplus U$.
- f. Montrer qu'il existe une base de V dans laquelle les matrices X(g) associées aux éléments g de G vérifie $X(g^{-1}) = \overline{X(g)^t}$.

Exercice 2. [Contre-example au Théorème de Maschke dont la caractèristique du corps divise l'ordre du groupe] Soient p un nombre premier, $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ et $C_p = \{1, g, g^2, \dots, g^{p-1}\}$ le groupe cyclique à p éléments. Soit $\varphi : C_p \to \mathrm{GL}_2(\mathbb{F}_p)$ l'application défini par

$$\varphi(g^j) = \begin{pmatrix} 1 & j \\ 0 & 1 \end{pmatrix}$$

pour tout $j \in \{0, 1, ..., p - 1\}$.

- a. Montrer que $V = \mathbb{F}_p^2$ est un C_p -module de dimension 2.
- b. Montrer que le sous-espace U de V engendré par e_1 est un sous-module de V.
- c. Montrer que U n'a pas de sous-module supplémentaire. Autrement dit, montrer qu'il n'existe pas de sous-module W de V tel que $V=U\oplus W$.