Feuille d'exercices : Relations d'orthogonalité

Exercice 1. Soit $Y: S_3 \to \mathrm{GL}_3(\mathbb{C})$ la représentation matricielle suivante.

$$Y([123]) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad Y([132]) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}$$

$$Y([231]) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad Y([213]) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}$$

$$Y([312]) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad Y([321]) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}$$

- a. Calculer le caractère de Y.
- b. Déterminer si Y est une représentation irréductible. Si c'est le cas, donner une démonstration ; sinon, décomposer Y en représentations irréductibles.

Exercice 2. Le groupe symétrique S_4 est engendré par les permutations $\sigma=2134$ et $\tau=2341$. Soit X la représentation matricielle de S_4 définie par les matrices

$$X(\sigma) = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad \text{et} \quad X(\tau) = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}.$$

- a. Calculer le caractère χ de X.
- b. Montrer que X est une représentation irréductible.
- c. Calculer le caractère ψ de la restriction de X au sous-groupe H engendré par le cycle 2341.
- d. Calculer $\langle \psi, \psi \rangle$ et en déduire que ψ n'est pas un caractère irréductible de H.
- e. En déduire que ψ n'est pas un caractère irréductible de H.
- f. Décomposer ψ en caractères irréductibles de H.

Exercice 3. Soit χ un caractère irréductible non-trivial de S_n .

- a. Montrer que $\sum_{\sigma \in S_n} \chi(\sigma) = 0$.
- b. Montrer que $\sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \chi(\sigma) = 0$.

Exercice 4. Soit $\chi_{r\acute{e}g}$ le caractère de la représentation régulière d'un groupe fini G. Montrer que pour tout caractère ψ de G, on a $\langle \chi_{r\acute{e}g}, \psi \rangle = \psi(1_G)$.

Exercice 5. Soit G un groupe fini. Montrer qu'un élément $g \in G$ et son inverse g^{-1} sont conjugués dans G ssi tout caractère de G prend sur g un valeur réelle. (Indice : deuxième relation d'orthogonalité.)

Exercice 6. Soient χ un caractère de G et ψ un caractère linéaire de G. Montrer que $\psi \chi$ est irréductible ssi χ est irréductible. (Indice : calculer $\langle \psi \chi, \psi \chi \rangle$.)