Feuille d'exercices 1 : Actions de groupes

Exercice 1. Soit H le sous-groupe de S_4 engendré par les transpositions (1,2) et (3,4). On fait agir H sur l'ensemble $\{1,2,3,4\}$. Déterminer les orbites et les stabilisateurs de l'action.

Exercice 2. Soit G un groupe fini d'ordre 21 agissant sur un ensemble E.

- a. Quels sont les cardinaux possibles des orbites pour cette action?
- b. Pour $i \in \mathbb{N}$, on note n_i le nombre d'orbites à i éléments. Montrer que

$$|E| = n_1 + 3n_3 + 7n_7 + 21n_{21}.$$

- c. On suppose que |E| = 11. Montrer qu'il y a au moins un point fixe pour l'action de G sur E.
- d. On suppose que |E| = 19 et qu'il n'y a pas de point fixe pour l'action de G sur E. Calculer le nombre d'orbites dans E sous l'action de G.

Exercice 3. Soit G un groupe agissant sur un ensemble E tel que l'action possède une et une seule orbite. Soit $x, y \in E$.

- a. Montrer que $\{g \in G : g \bullet x = y\}$ est un classe à gauche de $\operatorname{Stab}_G(x)$.
- b. Montrer que l'application

$$E \longrightarrow G/\operatorname{Stab}_{G}(x)$$
$$y \longmapsto \{g \in G : g \bullet x = y\}$$

est une bijection.

Exercice 4. Soit G un groupe. Montrer que la cardinalité de toute classe de conjugaison de G divise l'ordre de G. (Considérer l'action de G sur lui-même par conjugaison.)

Exercice 5. Soit G un groupe fini non trivial dont l'élément neutre est noté e, p un nombre premier quelconque et considérons le sous-ensemble suivant de $G \times G \times \cdots \times G$ (p fois).

$$E = \{(g_1, g_2, \dots, g_p) : g_1, g_2, \dots, g_p \in G \text{ et } g_1 g_2 \dots g_p = e\}.$$

a. Montrer que $\mathbb{Z}/p\mathbb{Z}$ agit sur E par

$$\bar{1} \bullet (g_1, g_2, g_3, \dots, g_p) = (g_2, g_3, \dots, g_p, g_1).$$

b. Montrer que l'ensemble de points fixes pour l'action de $\mathbb{Z}/p\mathbb{Z}$ sur E est

$$\{\underbrace{(g,g,\ldots,g)}_{p}:g\in G\text{ et }g^{p}=e\}.$$

- c. Montrer que la cardinalité de E est $|G|^{p-1}$.
- d. En déduire que

$$|G|^{p-1} \equiv |\{g \in G : g^p = e\}| \pmod{p}.$$
 (1)

Exercice 6. Déduire le théorème de Cauchy à partir (1).

Théorème de Cauchy : Si G est un groupe fini non trivial et p est un nombre premier qui divise |G|, alors il existe un élément d'ordre p dans G.

Exercice 7. Déduire à partir de (1) (avec $G = S_p$, le groupe symétrique) :

Théorème de Wilson : Si p est un nombre premier, alors $(p-1)! \equiv -1 \pmod{p}$.

Exercice 8. Soit G un groupe fini non trivial dont l'élément neutre est noté e et tel que pour tous $a, b \in G$ différent de e, il existe un élément c de G tel que $a = cbc^{-1}$.

- a. Montrer que si $a, b \in G$ sont tels que $a \neq e$ et $b \neq e$, alors a et b sont du même ordre.
- b. En déduire que G est un p-groupe, où p est un nombre premier. (Théorème de Cauchy)
- c. Montrer que G possède deux classes de conjugaison.
- d. En déduire que G est un groupe d'ordre 2.