Feuille d'exercices 5

Exercice 1. Soit K un corps et A, B deux matrices $n \times n$ à coefficients dans K. Montrer que

- a. trace(A + B) = trace(A) + trace(B).
- b. $\operatorname{trace}(\lambda A) = \lambda \operatorname{trace}(A)$ pour tout $\lambda \in \mathbb{K}$.
- c. trace(AB) = trace(BA).
- d. trace(A) = trace(PAP^{-1}) pour tous $P \in GL_n(\mathbb{K})$.

Exercice 2. Soit X une représentation matricielle d'un groupe fini G de caractère χ . On définit une fonction $\det(\chi): G \to \mathbb{C}$ par $\det(\chi(g)) = \det(X(g))$. Montrer que $\det(\chi)$ est un caractère linéaire de G.

Exercice 3. Pour deux fonctions χ et ψ quelconques de G vers \mathbb{C} , on définit

$$\langle \chi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\psi(g)}.$$

Montrer que $\langle \cdot, \cdot \rangle$ est un *produit scalaire complexe* sur l'espace des fonctions de G vers \mathbb{C} . Explicitement, montrer que :

- $a.\ \langle \chi,\psi\rangle=\overline{\langle \psi,\chi\rangle},$ où \overline{z} dénote le conjugué complexe d'un nombre complexe $z\,;$
- b. $\langle \alpha \chi + \alpha' \chi', \psi \rangle = \alpha \langle \chi, \psi \rangle + \alpha' \langle \chi', \psi \rangle$ pour tous $\alpha, \alpha' \in \mathbb{C}$ et $\chi, \chi', \psi : G \to \mathbb{C}$;
- c. $\langle \chi, \chi \rangle > 0$ si $\chi \neq 0$.

Exercice 4. Soit $Y: S_3 \to \mathrm{GL}_3(\mathbb{C})$ la représentation matricielle suivante.

$$Y([123]) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad Y([132]) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}$$

$$Y([231]) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad Y([213]) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}$$

$$Y([312]) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad Y([321]) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}$$

- a. Calculer le caractère de Y.
- b. Déterminer si Y est une représentation irréductible.
- c. Si Y n'est pas irréductible, décomposer Y en représentations irréductibles.

Exercice 5. Le groupe des quaternions, noté Q, est le groupe d'ordre 8 avec éléments

$$Q = \{1, -1, i, -i, j, -j, k, -k\}$$

et relations:

$$i^2 = j^2 = k^2 = ijk = -1$$
 et $(-1)^2 = 1$.

a. Montrer que

$$\rho(-1) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \quad \rho(i) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \quad \rho(j) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \rho(k) = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

se prolonge en une représentation sur \mathbb{C} de Q.

- b. Calculer le caractère de la représentation ρ .
- c. Montrer que la représentation ρ est irréductible.
- d. Montrer que le sous-groupe dérivé de Q est $Q' = \{1, -1\}$.
- e. Montrer que $Q/Q' \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- f. En déduire qu'il y a exactement 4 autres représentations irréductibles de Q, et qu'elles sont toutes de dimension 1.
- g. Calculer la table de caractères de Q. (Indice: utiliser les caractères de Q/Q')

Exercice 6. Soit D_4 le groupe diédral (isométries du carré).

- a. Écriver les éléments de D_4 comme des permutations des sommets du carré.
- b. Choisir une base du plan et exprimer les isométries dans la base.
- c. Calculer le caractère de cette représentation matricielle.
- d. Montrer que cette représentation matricielle est irréductible.
- e. Calculer le sous-groupe dérivé de D_4 . En déduire que $D_4/D_4 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- f. En déduire qu'il y a exactement 4 autres représentations irréductible de D_4 , et qu'elles sont toutes de dimension 1.
- g. Calculer la table de caractères de D_4 (Indice: utiliser les caractères de D_4/D_4')

Exercice 7. Comparer les tables de caractères de Q et D_4 . Réfléchir sur la signification.