Feuille d'exercices 4

Exercice 1. Soit $f: A \longrightarrow B$ un morphisme de R-modules à gauche. Montrer que f est injectif ssi le morphisme $f^*: \operatorname{Hom}_{\mathbb{Z}}(B, \mathbb{Q}/\mathbb{Z}) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q}/\mathbb{Z})$ est surjectif.

Exercice 2. Soit $0 \to A \xrightarrow{i} B \xrightarrow{p} C \to 0$ une suite exacte de R-modules à gauche. Montrer que si A et C sont de type fini, alors C est de type fini.

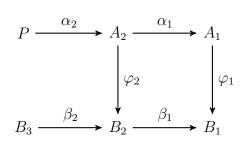
Exercice 3. Soient R un anneau intègre et $0 \to A \xrightarrow{i} B \xrightarrow{p} C \to 0$ une suite exacte courte de R-modules. Montrer que si A et C sont des modules de torsion, alors B est de torsion.

Exercice 4. Soient $f:A\to B$ et $g:B\to C$ deux R-morphismes. Montrer que l'on a une suite exacte

$$0 \to \ker(f) \to \ker(g \circ f) \to \ker(g) \to \operatorname{coker}(f) \to \operatorname{coker}(g \circ f) \to \operatorname{coker}(g) \to 0$$

Exercice 5.

- a. Soient $P \xrightarrow{g} N$ et $M \xrightarrow{f} N$ deux morphismes dans R Mod où P est projectif. Montrer qu'il existe $P \xrightarrow{h} M$ dans R Mod tel que $f \circ h = g$ ssi $\operatorname{im}(g) \subseteq \operatorname{im}(f)$.
- b. Énoncer et prouver le dual de la partie précédente.
- c. Soit un diagramme commutatif de $_R$ Mod



avec P projectif, $\alpha_1 \circ \alpha_2 = 0$, et la ligne du bas exacte en B_2 . Trouver un morphisme $P \xrightarrow{\varphi_3} B_3$ qui rend le diagramme commutatif.

Exercice 6. Soit G un groupe abélien.

- a. Montrer que le foncteur $T = \operatorname{Tor}_{1}^{\mathbb{Z}}(G, -)$ est exact à gauche.
- b. Montrer que le foncteur (covariant) $E=\operatorname{Ext}^1_{\mathbb Z}(G,-)$ est exact à droite.
- c. Montrer que le foncteur contravariant $F = \operatorname{Ext}^1_{\mathbb{Z}}(-, G)$ est exact à droite.