Feuille d'exercices 4

Exercice 1. Soient $A = \operatorname{Mat}_{n \times n}(R)$ et $B = \operatorname{Mat}_{m \times m}(R)$, où R est un anneau commutatif. Montrer que la R-algèbre $A \otimes_R B$ est isomorphisme à la R-algèbre $\operatorname{Mat}_{nm \times nm}(R)$.

Exercice 2. Soit R un anneau intègre (c'est-à-dire, R est commutatif, R est unitaire, et si $a, b \in R$ sont non nuls, alors ab est non nul). Pour un R-module à gauche M, on définit

$$Tor(M) = \{ m \in M : \text{il existe } a \in R \text{ non-nul tel que } a \cdot m = 0 \}.$$

- a. Montrer que Tor(M) est un sous-module de M.
- b. Soit $\varphi: M \to N$ un morphisme de R-modules. Montrer que $\varphi(\operatorname{Tor}(M)) \subseteq \operatorname{Tor}(N)$.
- c. Soit Q le corps des fractions de R. Montrer qu'il existe un isomorphisme de R-modules $Q \otimes_R M \cong Q \otimes_R (M/\operatorname{Tor}(M))$.

Exercice 3.

- a. Soit R un anneau intègre. Montrer que si R est un R-module injectif, alors R est un corps.
- b. Montrer que $\mathbb{Z}/6\mathbb{Z}$ est à la fois injectif et projectif en tant que $\mathbb{Z}/6\mathbb{Z}$ -module.

Exercice 4. Soit $_RB_S$ un (R, S)-bimodule qui est un R-module plat, et C_S un S-module injectif. Montrer que $\text{Hom}_S(B, C)$ est un R-module à gauche injectif.

Exercice 5. Montrer que si

$$0 \longrightarrow M_1 \longrightarrow P_1 \longrightarrow M \longrightarrow 0$$
 et $0 \longrightarrow M_2 \longrightarrow P_2 \longrightarrow M \longrightarrow 0$

sont deux suites exactes courtes avec P_1 et P_2 projectifs, alors $M_1 \oplus P_2 \cong M_2 \oplus P_1$.

Exercice 6. Soient $F:_R \operatorname{Mod} \to {}_S \operatorname{Mod}$ et $G:_S \operatorname{Mod} \to {}_R \operatorname{Mod}$ deux foncteurs tels que (F,G) est une paire de foncteurs adjointe. Montrer que si G est exact, alors F préserve les modules projectifs. Montrer que si F est exact, alors F préserve les modules injectifs.

Exercice 7. Montrer que si P est un R-module à droite projectif, alors $\operatorname{Hom}_{\mathbb{Z}}(P, \mathbb{Q}/\mathbb{Z})$ est un R-module à gauche injectif.

Exercice 8. Montrer que P est projectif ssi pour tout épimorphisme $f:I\to I''$ avec I injectif et tout morphisme $u:P\to I''$ il existe $v:P\to I$ tel que $f\circ v=u$.

Exercice 9. Montrer qu'un R-module injectif I est un cogénérateur injectif de R Mod ssi le foncteur $\operatorname{Hom}_R(-,I)$ est fidèle.

Exercice 10. Soit $f: A \longrightarrow B$ un morphisme de R-modules à gauche. Montrer que f est injectif ssi le morphisme $f^*: \operatorname{Hom}_{\mathbb{Z}}(B, \mathbb{Q}/\mathbb{Z}) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q}/\mathbb{Z})$ est surjectif.

Exercice 11. Soit f une application dans **Ens**. Montrer que f est un épimorphisme ssi f est surjective. Montrer que f est un monomorphisme ssi f est injective. Même pour la catégorie f Mod.

Exercice 12.

- a. Montrer que les objets initials, terminals ou nuls sont unique à isomorphisme près.
- b. Montrer que $\{0\}$ est un objet nul dans R Mod et que $\{1\}$ est un objet nul dans Grp.
- c. Montrer que ni **Ens** ni **Top** admet des objet nuls.
- d. Montrer que ($\{a\}, a$) est un objet nul dans \mathbf{Ens}_* , la catégorie d'ensembles pointés.
- e. Montrer que $(\{a\}, a)$ est un objet nul dans \mathbf{Top}_* , la catégorie d'espaces topologiques pointés.

Exercice 13. Soit $\mathscr C$ une catégorie additif qui admet un objet nul $\mathbb O$. Montrer que l'unique morphisme $A \to \mathbb O$ et l'unique morphisme $\mathbb O \to A$ sont les éléments neutres des groupes abéliens $\operatorname{Hom}_{\mathscr C}(A,\mathbb O)$ et $\operatorname{Hom}_{\mathscr C}(\mathbb O,A)$.

Exercice 14. Soit \mathscr{C} une catégorie qui admet un objet nul \mathbb{O} . Montrer que tout noyau est monomorphismes et tout conoyau est épimorphisme.

Exercice 15.

- a. Montrer que tout isomorphisme f d'une catégorie additive est à la fois un monomorphisme et un épimorphisme.
- b. Montrer que tout morphisme f d'une catégorie abélien est un isomorphisme ssi f est à la fois un monomorphisme et un épimorphisme.

Exercice 16. Soient $X \xrightarrow{g} Y$ et $Y \xrightarrow{f} Z$ deux morphisme d'une catégorie \mathscr{C} .

- a. Si $f \circ g$ est un monomorphisme, alors g est un monomorphisme.
- b. Si f et g sont des monomorphismes, alors $f\circ g$ est un monomorphisme.
- c. Si $f\circ g$ est un épimorphisme, alors f est un épimorphisme.
- d. Si f et g sont des épimorphisme, alors $f\circ g$ est un épimorphisme.
- $e.\ \mathrm{Si}\ f$ est un isomorphe, alors f est un monomorphisme et un épimorphisme.

Exercice 17. Soit u un morphisme d'une catégorie \mathscr{C} .

- a. Si $\ker(u)$ existe, alors u est un monomorphisme ssi $\ker(u) = 0$.
- b. Si $\operatorname{coker}(u)$ existe, alors u est un épimorphisme ssi $\operatorname{coker}(u)=0.$

Exercice 18. Soient B et C deux sous-ensemble de A.

- a. Montrer que le produit fibré de $B \xrightarrow{\text{incl}_B} A$ et $C \xrightarrow{\text{incl}_C} A$ dans **Ens** est $B \cap C$.
- b. Montrer que la somme amalgamée de $B \cap C \xrightarrow{\text{incl}} B$ et $B \cap C \xrightarrow{\text{incl}} C$ est $B \cup C$.

Exercice 19. Soient B et C deux sous-modules d'une R-module A.

- a. Montrer que le produit fibré de $B \xrightarrow{\text{incl}_B} A$ et $C \xrightarrow{\text{incl}_C} A$ dans $A \text{ Mod est } B \cap C$.
- b. Montrer que la somme amalgamée de $B \cap C \xrightarrow{\text{incl}} B$ et $B \cap C \xrightarrow{\text{incl}} C$ est B + C.