Feuille d'exercices 5

Objets groupes

Exercice 1. Soit X un ensemble muni de deux opérations notées * et * vérifiant :

- il existe un élément $e \in X$ tel que e * x = x * e = x pour tout $x \in X$;
- il existe un élément $e_{\circ} \in X$ tel que $e_{\circ} \circledast x = x \circledast e_{\circ} = x$ pour tout $x \in X$;
- $-(x \circledast y) * (u \circledast v) = (x * u) \circledast (y * v)$ pour tout $x, y, u, v \in X$.
- a. Montrer que $e = e_{\circ}$.
- b. Montrer que $x \circledast y = x * y$; en déduire que les deux opérations * et \circledast coincident.
- c. Montrer que x*y = y*x; en déduire que les deux opérations * et * sont commutatives.
- d. Montrer que les deux opérations * et ⊛ sont associatives.
- e. En déduire qu'un objet groupe dans la catégorie des groupes est un groupe abélien.

Exercice 2. Soit

$$\left(G, \quad G \sqcap G \xrightarrow{\mu} G, \quad F \xrightarrow{\varepsilon} G, \quad G \xrightarrow{\mathrm{inv}} G\right)$$

un objet groupe d'une une catégorie \mathcal{C} qui admet produits (notés \sqcap) et un objet final F.

En cours, on a vu que $\operatorname{Hom}_{\mathcal{C}}(X,G)$ est un groupe avec opération (notée \circledast) définie par

$$f \circledast q = \mu \circ (f \sqcap q),$$

où $f \sqcap g$ est le morphisme de \mathcal{C} donné par la propriété universelle de $G \sqcap G$ (voir Figure 1).

En utilisant cette description de \circledast , montrer que $\varepsilon \circ \zeta$ est l'élément neutre de $\mathrm{Hom}_{\mathbb{C}}(X,G)$, où ζ et l'unique morphisme de X vers F; c'est-à-dire, montrer que

$$f \circledast (\varepsilon \circ \zeta) = f = (\varepsilon \circ \zeta) \circledast f$$
 pour tout $X \xrightarrow{f} G$.

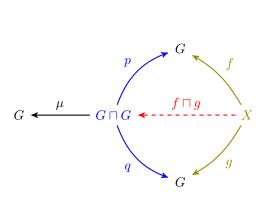


FIGURE 1 – Définition de $f \sqcap g$

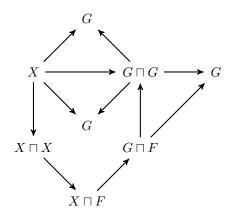


Figure 2 – Indication