Devoir 3

à remettre le 28 avril 2021

Exercice 1. Déterminer la table de caractère de A_4 (le groupe de permutations paires dans S_4).

Attention: l'ensemble de 3-cycles ne forment pas une seule classe de conjugaison!

Exercice 2. Voici les quatre premières lignes de la table de caractères d'un certain groupe fini G:

	g_1	g_2	g_3	g_4	g_5	g_6		
χ_1	1	1	1	1	1	1	(
χ_2	6	2	0	0	-1	-1	$(\alpha$	=
χ_3	1 6 7 3	-1	-1	1	0	0	(
χ_4	3	-1	1	0	α	\overline{lpha}		

où g_1, \ldots, g_6 sont des représentants des classes de conjugaison de G.

- a. Complèter la table de caractères de G.
- b. Déterminer la dimension de chaque représentation irréductible de G.
- c. Déterminer la cardinalité de G et la cardinalité de chaque classe de conjugaison de G.
- d. Déterminer les sous-groupes normaux de G.

Exercice 3. Soit V un $\mathbb{C}G$ -module et $V^{\otimes 3} = V \otimes V \otimes V$.

Rappelons que:

- si $\mathcal{B}=(b_1,\ldots,b_d)$ est une base de V, alors tout élément de $V^{\otimes 3}$ admet une unique écriture sous la forme $\sum_{1\leq i,j,k\leq d}\lambda_{i,j,k}(b_i\otimes b_j\otimes b_k)$ avec $\lambda_{i,j,k}\in\mathbb{C}$.
- $V^{\otimes 3}$ est un $\mathbb{C}G$ -module avec action définie sur les tenseurs élémentaires par

$$q(v_1 \otimes v_2 \otimes v_3) = (qv_1) \otimes (qv_2) \otimes (qv_3) \qquad (q \in G; v_1, v_2, v_3 \in V)$$

a. On définit une application linéaire $\gamma:V^{\otimes 3}\longrightarrow V^{\otimes 3}$ comme l'extension linéaire de

$$\gamma(b_i \otimes b_j \otimes b_k) = b_j \otimes b_k \otimes b_i$$
 pour tous $1 \leq i, j, k \leq d$,

où $\mathcal{B} = (b_1, \ldots, b_d)$ est une base de V. Montrer que $\gamma(v_1 \otimes v_2 \otimes v_3) = v_2 \otimes v_3 \otimes v_1$ pour tous $v_1, v_2, v_3 \in V$ et que γ est un morphisme de $\mathbb{C}G$ -modules.

- b. Posons $\omega = e^{2\pi i/3}$. Montrer que $U = \left\{ u \in V^{\otimes 3} : \gamma(u) = \omega u \right\}$ est un sous-module de $V^{\otimes 3}$.
- c. Soit $\mathcal{B} = (b_1, \dots, b_d)$ une base de V. Montrer que les éléments suivants forment une base de U:

$$\mu_{(i,j,k)} = \left(b_i \otimes b_j \otimes b_k\right) + \frac{1}{\omega} \left(b_j \otimes b_k \otimes b_i\right) + \frac{1}{\omega^2} \left(b_k \otimes b_i \otimes b_j\right),$$

pour tous $1 \le i, j, k \le d$ tels que $i \le j < k$ ou $i < k \le j$.

d. En déduire que le caractère de U est $\chi_U(g) = \frac{1}{3} \Big(\chi_V(g)^3 - \chi_V(g^3) \Big)$.