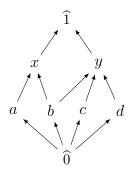
Devoir 3

à remettre le 28 novembre 2017

Exercice 1. Soit T le treillis défini par le diagramme de Hasse suivant.



- a. Identifier les indépendants, dépendants, circuits, circuits brisés, et SCBs.
- b. Utiliser le Théorème de Sagan pour calculer $\mu(\widehat{0},t)$ pour tout $t \in T$.

Exercice 2. Soit T un treillis fini, $\mathcal{A}(T)$ l'ensemble des atomes de T, et \triangleleft un ordre total sur $\mathcal{A}(T)$. Posons

 $SCB_{\triangleleft}(T) = \{X \subseteq \mathcal{A}(T) : X \text{ ne contient pas un circuit brisé (pour l'ordre total } \triangleleft)\}.$

- a. Montrer que $SCB_{\triangleleft}(T)$ est un complexe simplicial abstrait sur $\mathcal{A}(T)$.
- b. Posons $a = \min_{\triangleleft}(\mathcal{A}(T))$. Montrer que $X \in SCB_{\triangleleft}(T)$ ssi $X \cup \{a\} \in SCB_{\triangleleft}(T)$.

Exercice 3. Soit k < n et $P_{n,k}$ l'ensemble de parties de $[n] = \{1, 2, ..., n\}$ de cardinalité k. Si les éléments d'un ensemble $\{a_1, a_2, ..., a_k\} \in P_{n,k}$ satisfont $a_1 < a_2 < \cdots < a_k$, alors on écrit $\{a_1 < a_2 < \cdots < a_k\}$.

On définit un relation \leq sur $P_{n,k}$ par :

$${a_1 < a_2 < \dots < a_k} \le {b_1 < b_2 < \dots < b_k}$$
 ssi $a_1 \le b_1, a_2 \le b_2, \dots, a_k \le b_k$.

a. Montrer que $P_{n,k}$ est un treillis.

(Indice: Exercice 2 de Devoir 2)

b. Soit \leq_B l'ordre de Bruhat sur le groupe symétrique \mathfrak{S}_n . Montrer que

$$u \leq_B v$$
 implique $\{u(1), \dots, u(k)\} \subseteq \{v(1), \dots, v(k)\}$ pour tout $k \in [n]$.

c. (Bonus/Défi) Montrer la réciproque :

$$u \leq_B v$$
 ssi $\{u(1), \dots, u(k)\} \subseteq \{v(1), \dots, v(k)\}$ pour tout $k \in [n]$.