Devoir 2

à remettre le 11 novembre 2013

Exercice 1. (Algorithme de Todd-Coxeter) Soient

$$G = \langle x, y \mid x^3, y^5, (xy)^2 \rangle$$
 and $H = \langle x, yx^{-1}y^2 \rangle$.

- a. Montrer que [G:H]=5.
- b. Soient a=x et $b=yx^{-1}y^2$ les générateurs de H. Montrer que $a^3=b^3=(ab)^2=1$.
- c. En déduire que $|H| \le 12$.
- d. Montrer que |G| = 60 et que $G \cong A_5$.

Exercice 2. (Renverse de l'algorithme de Todd-Coxeter) Calculer une présentation par générateurs et relations du groupe engendré par les permutations suivantes :

$$a = (1, 2, 6, 4)(3, 8, 5, 7)$$

 $b = (1, 3, 6, 5)(2, 7, 4, 8).$

Exercice 3. Soit G et G' deux groupes décrits par générateurs et relations :

$$G = \langle S \mid R \rangle$$
 et $G' = \langle S' \mid R' \rangle$

Le produit libre de G et G' est le groupe décrit par la présentation suitante :

$$G * G' = \langle S \cup S' \mid R \cup R' \rangle.$$

- a. Montrer que $G\ast G'$ est le coprodiut de G et G' dans la catégorie des groupes.
- b. En déduire que le coproduit de $\mathbb{Z}/2\mathbb{Z}$ et $\mathbb{Z}/2\mathbb{Z}$ dans la catégorie des groupes est isomorphe au groupe diédral infini $D_{\infty} = \langle x, y : x^2, y^2 \rangle$.
- c. En déduire que le coproduit de deux groupes libres F_n et F_m et isomorphe à F_{n+m} .

Exercice 4. Soient C et D deux catégories. On dit que deux foncteurs

$$\mathcal{F}: \mathbf{C} \to \mathbf{D}$$
 et $\mathcal{G}: \mathbf{D} \to \mathbf{C}$

sont des foncteurs adjoints s'il existe un isomorphisme naturelle (en chaque variable) entre

$$\operatorname{Hom}_{\mathbf{D}}(\mathcal{F}(X), Y)$$
 et $\operatorname{Hom}_{\mathbf{C}}(X, \mathcal{G}(Y))$.

- a. Soient **Grp** la catégorie des groupes et **Ab** la catégorie des groupes abéliens. Montrer que le foncteur d'inclusion incl : $\mathbf{Ab} \to \mathbf{Grp}$ et le foncteur d'abélianisation $Ab : \mathbf{Grp} \to \mathbf{Ab}$ sont des foncteurs adjoints.
- b. Soient G et G' deux groupes. Montrer que l'abéianisé Ab(G*G') est isomorphe au produit cartésien $Ab(G) \times Ab(G')$.

Exercice 5. ($\mathbb{R}[x]$ -modules.) Soit $V=\mathbb{R}^2$. Rappler que V devient un $\mathbb{R}[x]$ -module si l'on se donne une application linéaire $T:V\to V$.

- a. Soit $T_1: V \to V$ la rotation par $\pi/2$ dans le sens horaire autour de l'origine. Montrer que V et $\{0\}$ sont les seuls $\mathbb{R}[x]$ —sous-modules de V.
- b. Soit $T_2: V \to V$ la projection sur la droite x = 0. Montrer que V, $\{0\}$, la droite x = 0 et la droite y = 0 sont les seuls $\mathbb{R}[x]$ —sous-module de V.
- c. Soit $T_3: V \to V$ la rotation par π dans le sens horaire autour de l'origine. Montrer que tout sous-espace de V est $\mathbb{R}[x]$ -sous-module de V.

Exercice 6.

Pour un idéal I d'un anneau R et un entier $n \in \mathbb{N}$, on définit I^n comme l'ensemble des combinaison linéaire finie des éléments de la forme $i_1 \cdots i_n$, où $i_1, \ldots, i_n \in I$.

Soit R un anneau commutatif. Soit I un idéal de R tel que $I^n = \{0\}$ pour un certain $n \in \mathbb{N}$. Soit $\varphi : M \to N$ un R-morphisme. Montrer que si l'application $\bar{\varphi} : M/IM \to N/IN$ définie par $\bar{\varphi}(m+IM) = \varphi(m) + IN$ est surjective, alors φ est surjective.