Feuille d'exercices 3

Exercice 1. Soit \mathcal{P} la catégorie associée à un ensemble partiellement ordonné (P, \leq_P) .

- a. Décrire les objets initials, finals, nuls de \mathcal{P} .
- b. Décrire le produit et coproduit de deux éléments de \mathcal{P} .
- c. Décrire le produit fibré et la somme amalgammée dans \mathcal{P} .
- d. Soit \mathcal{P}' la catégorie d'un poset $(P', \leq_{P'})$. Décrire les foncteurs $F: \mathcal{P} \to \mathcal{P}'$.
- e. Décrire les transformations naturelles entre deux foncteurs $F_1, F_2 : \mathcal{P} \to \mathcal{P}'$.

Exercice 2. Soit \mathcal{G} la catégorie associée à un groupe G.

- a. Décrire les objets initials, finals, nuls de \mathcal{G} .
- b. Décrire le produit et coproduit de deux éléments de \mathcal{G} .
- c. Décrire le produit fibré et la somme amalgammée dans \mathcal{G} .
- d. Soit \mathcal{G}' la catégorie d'un groupe G'. Décrire les foncteurs $F: \mathcal{G} \to \mathcal{G}'$.
- e. Décrire les transformations naturelles entre deux foncteurs $F_1, F_2: \mathcal{G} \to \mathcal{G}'$.

Exercice 3. Montrer que le groupe donné par les générateurs a_1, \ldots, a_n et les relations $[a_i, a_j]$, pour $i \neq j$ est le groupe abélien libre sur $\{a_1, \ldots, a_n\}$.

Exercice 4. Soient a et b des éléments d'un groupe libre F. Montrer que :

- a. Si $a^n = b^n$ avec n > 1, alors a = b.
- b. Si $a^m b^n = b^n a^m$ avec $mn \neq 0$, alors ab = ba.
- c. Si l'équation $x^n = a$ admet une solution x pour tout n, alors a = 1.

Exercice 5. Soit F_n le groupe libre sur n générateurs.

- a. Montrer que si n < m, alors F_n est isomorphe à un sous-groupe de F_m ainsi qu'un groupe quotient de F_m .
- b. Montrer que $F_1 \times F_1$ n'est pas un groupe libre.
- c. Montrer que le centre $Z(F_n)$ est trivial si n > 1.

Exercice 6. Soit $G = \langle a, b, c \mid a^3, b^3, c^4, acac^{-1}, aba^{-1}bc^{-1}b^{-1} \rangle$. Montrer que G est trivial. $(Consid\acute{e}rer\ (aba^{-1})^3 = (bcb^{-1})^3.)$

Exercice 7. Soit $G = \langle s, t \mid t^{-1}s^3t = s^5 \rangle$. Montrer que l'élément

$$s^{-1}t^{-1}s^{-1}tst^{-1}st$$

appartient à $\ker(f)$ pour tout morphisme de groupes $f: G \to G'$ avec G' fini.

Exercice 8. Soient $G = \langle x, y \mid x^3, y^3, x^{-1}y^{-1}xy \rangle$ et $H = \langle x \rangle$. Calculer G et les permutations des classes à droite de H induites par l'action de G.

Exercice 9. Soient $G = \langle x, y \mid x^2, y^3, (xy)^3 \rangle$ et $H = \langle xy \rangle$. Déterminer [G : H] et les permutations des classes à droite de H induites par l'action de G.

Exercice 10. Soient $G = \langle x, y \mid x^2y^2, x^3y^5 \rangle$ et $H = \langle 1 \rangle$. Déterminer [G : H] et les permutations des classes à droite de H induites par l'action de G.

Exercice 11. Soient $G = \langle a, b, c, d, e \mid ab = c, bc = d, cd = e, de = a, ea = b \rangle$ et $H = \langle a \rangle$. Déterminer [G : H] et les permutations des classes à droite de H induites par l'action de G.

Exercice 12. Soient $G = \langle x, y \rangle$ et $H = \langle x, y^2, yxyx^{-1}y^{-1}, yx^2yx^{-3}y^{-1}, yx^4y^{-1}, yx^3yx^{-2}y^{-1} \rangle$. Montrer que [G:H] = 5.

Exercice 13. Montrer que $G = \langle x, y \mid x^2y^2, y^{-1}xyx^{-3} \rangle$ est un groupe d'ordre 8.

Exercice 14. Soient $G = \langle x, y \mid x^3, y^5, (xy)^2 \rangle$ et $H = \langle xy, x^{-1}y^{-1}xyx \rangle$. Déterminer [G:H] et les permutations des classes à droite de H induites par l'action de G.

Exercice 15. Soient $G = \langle x, y \mid x^3, y^5, (xy)^2 \rangle$ et $H = \langle x, yx^{-1}y^2 \rangle$.

- a. Montrer que [G:H]=5.
- b. Soient a = x et $b = yx^{-1}y^2$ les générateurs de H. Montrer que $a^3 = b^3 = (ab)^2 = 1$.
- c. En déduire que $|H| \leq 12$.
- d. Montrer que |G| = 60 et que $G \cong A_5$.