Feuille d'exercices 2

Exercice 1.

Soit (P, \leq_P) un ensemble partiellement ordonné. On définit une catégorie \mathcal{P} comme suit.

- Les objets de la catégorie sont les éléments de P; c'est-à-dire, $Obj(\mathcal{P}) = P$.
- Si $x \leq_P y$, alors il existe une unique flèche de x vers y, notée i_y^x ; si $x \not\leq_P y$, alors il n'existe pas de flèche de x vers y. C'est-à-dire,

$$\operatorname{Hom}_{\mathcal{P}}(x,y) = \begin{cases} \left\{ i_y^x \right\}, & \text{si } x \leq_P y, \\ \left\{ \right\}, & \text{si } x \nleq_P y. \end{cases}$$

— La composition est définie à partir de la transitivité \leq_P dans P:

$$i_z^y \circ i_y^x = i_z^x$$
.

- a. Vérifier que \mathcal{P} est une catégorie.
- b. Décrire les isomorphismes, les monomorphismes et les épimorphismes de \mathcal{P} .
- c. Soit x un objet de \mathcal{P} . Donner une description de la catégorie (\mathcal{P}_x en termes de l'ensemble partiellement ordonné (P, \leq_P) .

Exercice 2. Soit **Mon** la catégorie de monoïdes. Montrer que l'inclusion $\mathbb{N} \hookrightarrow \mathbb{Z}$ est un épimorphisme.

Exercice 3. Soit Rng la catégorie d'anneaux (pas nécessairement unitaire). Montrer que l'inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$ est un épimorphisme.

Exercice 4. Soient $X \xrightarrow{g} Y$ et $Y \xrightarrow{f} Z$ deux morphisme d'une catégorie \mathcal{C} .

- a. Si $f \circ g$ est un monomorphisme, alors g est un monomorphisme.
- b. Si f et g sont des monomorphismes, alors $f \circ g$ est un monomorphisme.
- c. Si $f \circ g$ est un épimorphisme, alors f est un épimorphisme.
- d. Si f et g sont des épimorphisme, alors $f \circ g$ est un épimorphisme.
- e. Si f est un isomorphe, alors f est un monomorphisme et un épimorphisme.
- f. Si deux morphismes parmi f, g et $f \circ g$ sont isomorphismes, alors f, g et $f \circ g$ sont isomorphismes.

Exercice 5.

- a. Montrer que les objets initials, finals ou nuls sont unique à unique isomorphisme près.
- b. Montrer que le groupe trivial est un objet nul dans les catégories Ab et Gr.
- c. Montrer que ni **Ens** ni **Top** admet des objet nuls.
- d. Soit $X = \{x\}$ un ensemble à un seul élément. Montrer que (X, x) est un objet nul dans \mathbf{Ens}_* , la catégorie d'ensembles pointés, et dans \mathbf{Top}_* , la catégorie d'espaces topologiques pointés.

Exercice 6. Montrer que l'anneau \mathbb{Z} est un objet initial dans la catégorie $\mathbf{Ann_1}$ et que l'anneau nul (l'anneau à un seul élément) est l'objet terminal.