Feuille d'Exercices 1

Actions de groupes

Exercice 1. Soit H et K deux sous-groupes d'un groupe fini G. On définit, pour tout $(h, k) \in H \times K$ et pour tout $x \in HK$,

$$(h,k) \bullet x = hxk^{-1}$$

Vérifier que cela est une action du groupe $H \times K$ sur l'ensemble HK.

Exercice 2. Soit G un groupe agissant sur un ensemble E tel que l'action possède une et une seule orbite. Soit $x, y \in E$.

- a. Montrer que $\{g \in G : g \bullet x = y\}$ est un classe à gauche de $\operatorname{Stab}_G(x)$.
- b. Montrer que l'application

$$E \longrightarrow G/\operatorname{Stab}_{G}(x)$$
$$y \longmapsto \{g \in G : g \bullet x = y\}$$

est une bijection.

Exercice 3. Soit G un groupe fini d'ordre 21 agissant sur un ensemble E.

- a. Expliquer pourquoi la cardinalité d'une orbite de cette action est 1, 3, 7 ou 21.
- b. Pour $i \in \mathbb{N}$, on note n_i le nombre d'orbites à i éléments. Montrer que

$$|E| = n_1 + 3n_3 + 7n_7 + 21n_{21}.$$

- c. Montrer que si |E| = 11, alors il y a au moins un point fixe pour l'action de G sur E.
- d. On suppose que |E| = 19 et qu'il n'y a pas de point fixe pour l'action de G sur E. Calculer le nombre d'orbites dans E sous l'action de G.

Parties génératrices d'un groupe

Exercice 4. Soit S une partie génératrice d'un groupe fini G. Montrer que tout élément de G s'exprime comme produit des éléments de S.

(Indice: La conclusion n'est pas vrai si G n'est pas fini.)

Exercice 5.

- a. Soit S un sous-ensemble de G. Montrer que S n'engendre pas G ssi elle est contenue dans un sous-groupe propre de G.
- b. Montrer que tout groupe fini G possède une partie génératrice avec au plus $\log_2(|G|)$ éléments.

Algorithme Orbite/Stabilisateur

Exercice 6. Appliquer l'algorithme Orbite/Stabilisateur vu en classe à un groupe fini monogène. Combien de générateurs de Schreier nontrivial produira-t-il?

Exercice 7. Soit $[x_1, x_2, ..., x_k]$ une base pour un groupe de permutations G. Montrer que pour tous $g, h \in G$, on a que g = h ssi $g(x_i) = h(x_i)$ pour tout $i \in \{1, 2, ..., k\}$. (Autrement dit, pour déterminer si deux éléments de G coincident, il suffit de comparer leurs actions sur les éléments de la base.)

Rappel sur les groupes symétriques S_n

Exercice 8.

- a. Donner un exemple d'un homomorphisme non-trivial de \mathbb{Z} dans S_3 .
- b. Est-il possible de construire un homomorphisme surjectif de \mathbb{Z} dans S_3 ?

Exercice 9. Soit $\alpha = (a_1, a_2, \dots, a_{l-1}, a_l)$ un cycle dans S_n . La *longueur* de α est l. Le *support* de α est l'ensemble $\{a_1, a_2, \dots, a_{l-1}, a_l\}$. On dit que deux cycles sont à *disjoint* si leurs supports sont disjoint.

- a. Montrer que $\alpha^{-1} = (a_l, a_{l-1}, \dots, a_2, a_1)$.
- b. Montrer que l'ordre de α est l. Montrer que l'ordre de α^{-1} est l.
- c. Montrer que si α est un cycle de longueur impair, alors α^2 est aussi un cycle.
- d. Montrer que $\alpha\beta = \beta\alpha$ si α et β sont des cycles à supports disjoints.
- e. Soit σ une permutation quelconque dans S_n . Montrer que

$$\sigma \alpha \sigma^{-1} = (\sigma(a_1), \sigma(a_2), \dots, \sigma(a_l)).$$

- f. Soit $\sigma \in S_n$. Montrer que σ se décompose de manière unique en produit de cycles disjoints (à l'ordre des facteurs près). Par exemple, pour la permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 5 & 7 & 6 & 1 & 8 & 2 \end{pmatrix}$ on a $\sigma = (1, 3, 5, 6)(2, 4, 7, 8)$.
- g. Le type cyclique d'une permutation σ est le partage de n (cliquer pour la définition) donné par les longueurs des cycles dans la décomposition de σ en produit de cycles disjoints. Montrer que deux permutations sont conjugués ssi ils ont le même type cyclique.
- h. Montrer que σ et son inverse σ^{-1} sont conjugués.
- i. Soit σ une permutation dans S_n , où $n \geq 3$. Montrer que si $\sigma \omega = \omega \sigma$ pour tout $\omega \in S_n$, alors σ est l'élément neutre de S_n .

Exercice 10. Montrer que toute permutation de S_n se décompose en produit des permutations suivantes :

a.
$$(1,2), (1,3), (1,4), \ldots, (1,n)$$
. (Indice: $(a_1, a_2, \ldots, a_p) = (a_1, a_p)(a_1, a_{p-1}) \cdots (a_1, a_2)$)
b. $(1,2), (2,3), (3,4), \ldots, (n-1,n)$. (Indice: $(3,4) = (1,3)(1,4)(1,3)^{-1}$)

$$c. (1,2), (1,2,3,\ldots,n).$$

$$d. (1,2), (2,3,\ldots,n).$$

(Autrement dit, les ensembles ci-dessus sont des parties génératrices de S_n .)

Exercice 11. Soit $n \geq 2$. On appelle signature d'une permutation $\omega \in S_n$ le nombre

$$\operatorname{sign}(\omega) = \prod_{1 \le i \le j \le n} \frac{\omega(i) - \omega(j)}{i - j},$$

où le produit porte sur tous les couples (i,j) tels que i < j. Par exemple, pour $\omega = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$,

$$\begin{split} \operatorname{sign}\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} &= \begin{pmatrix} \frac{\omega(1) - \omega(2)}{1 - 2} \end{pmatrix} \begin{pmatrix} \frac{\omega(1) - \omega(3)}{1 - 3} \end{pmatrix} \begin{pmatrix} \frac{\omega(2) - \omega(3)}{2 - 3} \end{pmatrix} \\ &= \begin{pmatrix} \frac{2 - 3}{1 - 2} \end{pmatrix} \begin{pmatrix} \frac{2 - 1}{1 - 3} \end{pmatrix} \begin{pmatrix} \frac{3 - 1}{2 - 3} \end{pmatrix} \\ &= 1 \end{split}$$

- a. Une inversion de $\omega \in S_n$ est un couple (i, j) tel que $1 \le i < j \le n$ et $\omega(i) > \omega(j)$. Soit $\operatorname{inv}(\omega)$ l'ensemble d'inversions de ω . Montrer que $\operatorname{sign}(\omega) = (-1)^{|\operatorname{inv}(\omega)|}$.
- b. Calculer la signature de tous les éléments de S_3 .
- c. Montrer que toute transposition de S_n est de signature -1.
- d. Montrer que sign est un homomorphisme de S_n dans le groupe multiplicatif $\{1, -1\}$.

(Indice: on peut le faire directement ou à l'aide d'une présentation de S_n)

- e. Une permutation paire est une permutation qui peut être exprimée comme le produit d'un nombre pair de transpositions; une permutation impaire est une permutation qui peut être exprimée comme le produit d'un nombre impair de transpositions. Montrer que $sign(\sigma) = 1$ si σ est paire; et $sign(\sigma) = -1$ si σ est impaire.
- f. L'ensemble des permutations paires dans S_n forme le groupe alterné A_n . Montrer que A_n est un sous-groupe normal de S_n .
- g. Montrer que $|A_n| = \frac{n!}{2}$.
- h. Montrer que A_n est engendré par tous les cycles de longueur 3 (tout d'abord, remarquer qu'il suffit de montrer que le produit de deux transpositions est un produit de cycles de longueur 3; ensuite, montrer que (a,b)(a,b) = (); (a,b)(b,c) = (a,b,c); et (a,b)(c,d) = (a,b,c)(b,c,d)).