
Worksheet 10 - Introduction to Cython

Introduction to Cython
Cython is a programming language specially designed for writing Python
extension modules. It's designed to bridge the gap between the nice, high-level,
easy-to-use world of Python and the messy, low-level world of C.

A Python function

Consider the following Python function that outputs a list of the first m prime
numbers.

def first_primes_python(m):
 primes_list = []
 n = 2
 while len(primes_list) < m:
 n_is_prime = True
 for p in primes_list:
 if n % p == 0:
 n_is_prime = False
 break
 if n_is_prime == True:
 primes_list.append(n)
 n = n + 1
 return primes_list

To time a function in Python, use the time command.

time p = first_primes_python(5000)

 Time: CPU 6.20 s, Wall: 6.64 s

p[:100]

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,
281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439,
443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521,
523, 541]

First steps with Cython

Sage Worksheet: Worksheet 10 - Introduction to Cython http://localhost:8000/home/admin/19/print

1 of 3 03/06/09 02:27 AM

To Cythonize a function, just add %cython as the first line in the notebook cell.

The Sage notebook will take the contents of this cell, convert it to Cython, compile
it, and load the resulting function.

%cython
def first_primes_cython_v1(m):
 primes_list = []
 n = 2
 while len(primes_list) < m:
 n_is_prime = True
 for p in primes_list:
 if n % p == 0:
 n_is_prime = False
 break
 if n_is_prime == True:
 primes_list.append(n)
 n = n + 1
 return primes_list

 __home_sal...19_code_sage5_spyx.c __home_sal...code_sage5_spyx.html

Note the speed up we obtained by just adding %cython:

time p = first_primes_cython_v1(5000)

 Time: CPU 0.88 s, Wall: 0.91 s

time p = first_primes_cython_v1(10000)

 Time: CPU 3.23 s, Wall: 3.45 s

More Cython

Note that two links were returned above. The first one is a link to the C source
code file created by Cython from our function. Go take a look. The conversion is a
nontrivial process.

The second link above is an html page that identifies Python-to-C and C-to-Python
conversions that are taking place. By minimizing such conversions and declaring
data types, we can further improve the speed of our function.

Below, some object type declarations are made, we simplify some of the loops and
we use a C array instead of the Python list primes_list. But since we want to return
the data as a Python list, we convert to a Python list at the end.

%cython

Sage Worksheet: Worksheet 10 - Introduction to Cython http://localhost:8000/home/admin/19/print

2 of 3 03/06/09 02:27 AM

def first_primes_v3(int m):
 cdef int k = 0
 cdef int n = 2
 cdef int i, n_is_prime
 cdef int c_array[100000]
 while k < m:
 n_is_prime = 0
 i = 0
 while i < k:
 if n % c_array[i] == 0:
 n_is_prime = 1
 break
 i = i + 1
 if n_is_prime == 0:
 c_array[k] = n
 k = k+1
 n = n + 1
 primes_list = []
 i = 0
 while i < k:
 primes_list.append(c_array[i])
 i = i+1
 return primes_list

 __home_sal...9_code_sage12_spyx.c __home_sal...ode_sage12_spyx.html

time p = first_primes_v3(10000)

 Time: CPU 0.22 s, Wall: 0.23 s
We didn't screw up anything, this function actually does produce primes:

first_primes_v3(17)

 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59]
And it agrees with the Sage version of the function:

first_primes_v3(10000) == primes_first_n(10000)

 True
But the Sage version is much, much better:

time p = primes_first_n(10000)

 Time: CPU 0.00 s, Wall: 0.00 s

primes_first_n??

Sage Worksheet: Worksheet 10 - Introduction to Cython http://localhost:8000/home/admin/19/print

3 of 3 03/06/09 02:27 AM

